Scaling dimensions from linearized tensor renormalization group transformations


Abstract in English

We show a way to perform the canonical renormalization group (RG) prescription in tensor space: write down the tensor RG equation, linearize it around a fixed-point tensor, and diagonalize the resulting linearized RG equation to obtain scaling dimensions. The tensor RG methods have had a great success in producing accurate free energy compared with the conventional real-space RG schemes. However, the above-mentioned canonical procedure has not been implemented for general tensor-network-based RG schemes. We extend the success of the tensor methods further to extraction of scaling dimensions through the canonical RG prescription, without explicitly using the conformal field theory. This approach is benchmarked in the context of the Ising models in 1D and 2D. Based on a pure RG argument, the proposed method has potential applications to 3D systems, where the existing bread-and-butter method is inapplicable.

Download