No Arabic abstract
In the past few years, we have observed a huge supply-demand gap for autonomous driving engineers. The core problem is that autonomous driving is not one single technology but rather a complex system integrating many technologies, and no one single academic department can provide comprehensive education in this field. We advocate to create a cross-disciplinary program to expose students with technical background in computer science, computer engineering, electrical engineering, as well as mechanical engineering. On top of the cross-disciplinary technical foundation, a capstone project that provides students with hands-on experiences of working with a real autonomous vehicle is required to consolidate the technical foundation.
The commercialization of autonomous machines is a thriving sector, and likely to be the next major computing demand driver, after PC, cloud computing, and mobile computing. Nevertheless, a suitable computer architecture for autonomous machines is missing, and many companies are forced to develop ad hoc computing solutions that are neither scalable nor extensible. In this article, we analyze the demands of autonomous machine computing, and argue for the promise of dataflow architectures in autonomous machines.
After decades of uninterrupted progress and growth, information technology has so evolved that it can be said we are entering the age of autonomous machines, but there exist many roadblocks in the way of making this a reality. In this article, we make a preliminary attempt at recognizing and categorizing the technical and non-technical challenges of autonomous machines; for each of the ten areas we have identified, we review current status, roadblocks, and potential research directions. It is hoped that this will help the community define clear, effective, and more formal development goalposts for the future.
Existing approaches to cyber security and regulation in the automotive sector cannot achieve the quality of outcome necessary to ensure the safe mass deployment of advanced vehicle technologies and smart mobility systems. Without sustainable resilience hard-fought public trust will evaporate, derailing emerging global initiatives to improve the efficiency, safety and environmental impact of future transport. This paper introduces an operational cyber resilience methodology, CyRes, that is suitable for standardisation. The CyRes methodology itself is capable of being tested in court or by publicly appointed regulators. It is designed so that operators understand what evidence should be produced by it and are able to measure the quality of that evidence. The evidence produced is capable of being tested in court or by publicly appointed regulators. Thus, the real-world system to which the CyRes methodology has been applied is capable of operating at all times and in all places with a legally and socially acceptable value of negative consequence.
The field of machine ethics is concerned with the question of how to embed ethical behaviors, or a means to determine ethical behaviors, into artificial intelligence (AI) systems. The goal is to produce artificial moral agents (AMAs) that are either implicitly ethical (designed to avoid unethical consequences) or explicitly ethical (designed to behave ethically). Van Wynsberghe and Robbins (2018) paper Critiquing the Reasons for Making Artificial Moral Agents critically addresses the reasons offered by machine ethicists for pursuing AMA research; this paper, co-authored by machine ethicists and commentators, aims to contribute to the machine ethics conversation by responding to that critique. The reasons for developing AMAs discussed in van Wynsberghe and Robbins (2018) are: it is inevitable that they will be developed; the prevention of harm; the necessity for public trust; the prevention of immoral use; such machines are better moral reasoners than humans, and building these machines would lead to a better understanding of human morality. In this paper, each co-author addresses those reasons in turn. In so doing, this paper demonstrates that the reasons critiqued are not shared by all co-authors; each machine ethicist has their own reasons for researching AMAs. But while we express a diverse range of views on each of the six reasons in van Wynsberghe and Robbins critique, we nevertheless share the opinion that the scientific study of AMAs has considerable value.
Optimizing the quality of result (QoR) and the quality of service (QoS) of AI-empowered autonomous systems simultaneously is very challenging. First, there are multiple input sources, e.g., multi-modal data from different sensors, requiring diverse data preprocessing, sensor fusion, and feature aggregation. Second, there are multiple tasks that require various AI models to run simultaneously, e.g., perception, localization, and control. Third, the computing and control system is heterogeneous, composed of hardware components with varied features, such as embedded CPUs, GPUs, FPGAs, and dedicated accelerators. Therefore, autonomous systems essentially require multi-modal multi-task (MMMT) learning which must be aware of hardware performance and implementation strategies. While MMMT learning has been attracting intensive research interests, its applications in autonomous systems are still underexplored. In this paper, we first discuss the opportunities of applying MMMT techniques in autonomous systems and then discuss the unique challenges that must be solved. In addition, we discuss the necessity and opportunities of MMMT model and hardware co-design, which is critical for autonomous systems especially with power/resource-limited or heterogeneous platforms. We formulate the MMMT model and heterogeneous hardware implementation co-design as a differentiable optimization problem, with the objective of improving the solution quality and reducing the overall power consumption and critical path latency. We advocate for further explorations of MMMT in autonomous systems and software/hardware co-design solutions.