Do you want to publish a course? Click here

APOGEE spectroscopic evidence for chemical anomalies in dwarf galaxies: The case of M~54 and Sagittarius

252   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present evidence for globular cluster stellar debris in a dwarf galaxy system (Sagittarius: Sgr) based on an analysis of high-resolution textit{H}-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. We add [N/Fe], [Ti/Fe], and [Ni/Fe] abundance ratios to the existing sample of potential members of M~54; this is the first time that [N/Fe] abundances are derived for a large number of stars in M~54. Our study reveals the existence of a significant population of nitrogen- (with a large spread, $gtrsim1$ dex) and aluminum-enriched stars with moderate Mg depletion in the core of the M~54$+$Sagittarius system, which shares the light element anomalies characteristic of second-generation globular cluster stars (GCs), thus tracing the typical phenomenon of multiple stellar populations seen in other Galactic GCs at similar metallicity, confirming earlier results based on the Na-O anti-correlation. We further show that most of the stars in M~54 exhibit different chemical - patterns evidently not present in Sgr field stars. Furthermore, we report the serendipitous discovery of a nitrogen-enhanced extra-tidal star with GC second-generation-like chemical patterns for which both chemical and kinematic evidence is commensurate with the hypothesis that the star has been ejected from M~54. Our findings support the existence of chemical anomalies associated with likely tidally shredded GCs in dwarf galaxies in the Local Group and motivate future searches for such bonafide stars along other known Milky Way streams.



rate research

Read More

214 - E. Carretta 2010
We derive homogeneous abundances of Fe, O, Na and alpha-elements from high resolution FLAMES spectra for 76 red giant stars in NGC 6715 (M 54) and for 25 red giants in the surrounding nucleus of the Sagittarius (Sgr) dwarf galaxy. Our main findings are that: (i) we confirm that M 54 shows intrinsic metallicity dispersion, ~0.19 dex r.m.s.; (ii) when the stars of the Sgr nucleus are included, the metallicity distribution strongly resembles that in omega Cen; the relative contribution of the most metal-rich stars is however different in these two objects; (iii) in both GCs there is a very extended Na-O anticorrelation, signature of different stellar generations born within the cluster, and (iv) the metal-poor and metal-rich components in M 54 (and omega Cen) show clearly distinct extension of the Na-O anticorrelation, the most heavily polluted stars being those of the metal-rich component. We propose a tentative scenario for cluster formation that could explain these features. Finally, similarities and differences found in the two most massive GCs in our Galaxy can be easily explained if they are similar objects (nuclear clusters in dwarf galaxies) observed at different stages of their dynamical evolution.
100 - E. Carretta 2010
Homogeneous abundances of light elements, alpha and Fe-group elements from high-resolution FLAMES spectra are presented for 76 red giant stars in M54, a massive globular cluster (GC) lying in the nucleus of the Sagittarius dwarf galaxy. We also derived detailed abundances for 27 red giants belonging to the Sgr nucleus. Our abundances assess the intrinsic metallicity dispersion (~0.19 dex, rms scatter) of M54, with the bulk of stars peaking at [Fe/H]~-1.6 and a long tail extending to higher metallicities, similar to omega Cen. The spread in these probable nuclear star clusters exceeds those of most GCs: these massive clusters are located in a region intermediate between normal GCs and dwarf galaxies. M54 shows the Na-O anticorrelation, typical signature of GCs, which is instead absent in the Sgr nucleus. The light elements (Mg, Al, Si) participating to the high temperature Mg-Al cycle show that the pattern of (anti)correlations produced by proton-capture reactions in H-burning is clearly different between the most metal-rich and most metal-poor components in the two most massive GCs in the Galaxy, confirming early result based on the Na-O anticorrelation. As in omega Cen, stars affected by most extreme processing, i.e. showing the signature of more massive polluters, are those of the metal-rich component. This can be understood if the burst of star formation giving birth to the metal-rich component was delayed by as much as 10-30 Myr with respect to the metal-poor one. The evolution of these massive GCs can be reconciled in the general scenario for the formation of GCs sketched in Carretta et al.(2010a) taking into account that omega Cen could have already incorporated the surrounding nucleus of its progenitor and lost the rest of the hosting galaxy while the two are still observable as distinct components in M54 and the surrounding field.
The SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey provides precise chemical abundances of 18 chemical elements for $sim$ 176,000 red giant stars distributed over much of the Milky Way Galaxy (MW), and includes observations of the core of the Sagittarius dwarf spheroidal galaxy (Sgr). The APOGEE chemical abundance patterns of Sgr have revealed that it is chemically distinct from the MW in most chemical elements. We employ a emph{k}-means clustering algorithm to 6-dimensional chemical space defined by [(C+N)/Fe], [O/Fe], [Mg/Fe], [Al/Fe], [Mn/Fe], and [Ni/Fe] to identify 62 MW stars in the APOGEE sample that have Sgr-like chemical abundances. Of the 62 stars, 35 have emph{Gaia} kinematics and positions consistent with those predicted by emph{N}-body simulations of the Sgr stream, and are likely stars that have been stripped from Sgr during the last two pericenter passages ($<$ 2 Gyr ago). Another 20 of the 62 stars exhibit chemical abundances indistinguishable from the Sgr stream stars, but are on highly eccentric orbits with median $r_{rm apo} sim $ 25 kpc. These stars are likely the `accreted halo population thought to be the result of a separate merger with the MW 8-11 Gyr ago. We also find one hypervelocity star candidate. We conclude that Sgr was enriched to [Fe/H] $sim$ -0.2 before its most recent pericenter passage. If the `accreted halo population is from one major accretion event, then this progenitor galaxy was enriched to at least [Fe/H] $sim$ -0.6, and had a similar star formation history to Sgr before merging.
We have conducted a spectroscopic survey of the inner regions of the Sagittarius (Sgr) dwarf galaxy using the AAOmega spectrograph on the Anglo-Australian Telescope. We determine radial velocities for over 1800 Sgr star members in 6 fields that cover an area 18.84 deg^2, with a typical accuracy of ~2 km/s. Motivated by recent numerical models of the Sgr tidal stream that predict a substantial amount of rotation in the dwarf remnant core, we compare the kinematic data against N-body models that simulate the stream progenitor as (i) a pressure-supported, mass-follows-light system, and (ii) a late-type, rotating disc galaxy embedded in an extended dark matter halo. We find that the models with little, or no intrinsic rotation clearly yield a better match to the mean line-of-sight velocity in all surveyed fields, but fail to reproduce the shape of the line-of-sight velocity distribution. This result rules out models wherein the prominent bifurcation observed in the leading tail of the Sgr stream was caused by a transfer from intrinsic angular momentum from the progenitor satellite into the tidal stream. It also implies that the trajectory of the young tidal tails has not been affected by internal rotation in the progenitor system. Our finding indicates that new, more elaborate dynamical models, in which the dark and luminous components are treated independently, are necessary for simultaneously reproducing both the internal kinematics of the Sgr dwarf and the available data for the associated tidal stream.
Wrapping around the Milky Way, the Sagittarius stream is the dominant substructure in the halo. Our statistical selection method has allowed us to identify 106 highly likely members of the Sagittarius stream. Spectroscopic analysis of metallicity and kinematics of all members provides us with a new mapping of the Sagittarius stream. We find correspondence between the velocity distribution of stream stars and those computed for a triaxial model of the Milky Way dark matter halo. The Sagittarius trailing arm exhibits a metallicity gradient, ranging from $-0.59$ dex to $-0.97$ dex over 142$^{circ}$. This is consistent with the scenario of tidal disruption from a progenitor dwarf galaxy that possessed an internal metallicity gradient. We note high metallicity dispersion in the leading arm, causing a lack of detectable gradient and possibly indicating orbital phase mixing. We additionally report on a potential detection of the Sextans dwarf spheroidal in our data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا