No Arabic abstract
In this paper, we consider a type of image quality assessment as a task-specific measurement, which can be used to select images that are more amenable to a given target task, such as image classification or segmentation. We propose to train simultaneously two neural networks for image selection and a target task using reinforcement learning. A controller network learns an image selection policy by maximising an accumulated reward based on the target task performance on the controller-selected validation set, whilst the target task predictor is optimised using the training set. The trained controller is therefore able to reject those images that lead to poor accuracy in the target task. In this work, we show that the controller-predicted image quality can be significantly different from the task-specific image quality labels that are manually defined by humans. Furthermore, we demonstrate that it is possible to learn effective image quality assessment without using a ``clean validation set, thereby avoiding the requirement for human labelling of images with respect to their amenability for the task. Using $6712$, labelled and segmented, clinical ultrasound images from $259$ patients, experimental results on holdout data show that the proposed image quality assessment achieved a mean classification accuracy of $0.94pm0.01$ and a mean segmentation Dice of $0.89pm0.02$, by discarding $5%$ and $15%$ of the acquired images, respectively. The significantly improved performance was observed for both tested tasks, compared with the respective $0.90pm0.01$ and $0.82pm0.02$ from networks without considering task amenability. This enables image quality feedback during real-time ultrasound acquisition among many other medical imaging applications.
Subjective perceptual image quality can be assessed in lab studies by human observers. Objective image quality assessment (IQA) refers to algorithms for estimation of the mean subjective quality ratings. Many such methods have been proposed, both for blind IQA in which no original reference image is available as well as for the full-reference case. We compared 8 state-of-the-art algorithms for blind IQA and showed that an oracle, able to predict the best performing method for any given input image, yields a hybrid method that could outperform even the best single existing method by a large margin. In this contribution we address the research question whether established methods to learn such an oracle can improve blind IQA. We applied AutoFolio, a state-of-the-art system that trains an algorithm selector to choose a well-performing algorithm for a given instance. We also trained deep neural networks to predict the best method. Our results did not give a positive answer, algorithm selection did not yield a significant improvement over the single best method. Looking into the results in depth, we observed that the noise in images may have played a role in why our trained classifiers could not predict the oracle. This motivates the consideration of noisiness in IQA methods, a property that has so far not been observed and that opens up several interesting new research questions and applications.
In this paper, we propose a no-reference (NR) image quality assessment (IQA) method via feature level pseudo-reference (PR) hallucination. The proposed quality assessment framework is grounded on the prior models of natural image statistical behaviors and rooted in the view that the perceptually meaningful features could be well exploited to characterize the visual quality. Herein, the PR features from the distorted images are learned by a mutual learning scheme with the pristine reference as the supervision, and the discriminative characteristics of PR features are further ensured with the triplet constraints. Given a distorted image for quality inference, the feature level disentanglement is performed with an invertible neural layer for final quality prediction, leading to the PR and the corresponding distortion features for comparison. The effectiveness of our proposed method is demonstrated on four popular IQA databases, and superior performance on cross-database evaluation also reveals the high generalization capability of our method. The implementation of our method is publicly available on https://github.com/Baoliang93/FPR.
The performance of many medical image analysis tasks are strongly associated with image data quality. When developing modern deep learning algorithms, rather than relying on subjective (human-based) image quality assessment (IQA), task amenability potentially provides an objective measure of task-specific image quality. To predict task amenability, an IQA agent is trained using reinforcement learning (RL) with a simultaneously optimised task predictor, such as a classification or segmentation neural network. In this work, we develop transfer learning or adaptation strategies to increase the adaptability of both the IQA agent and the task predictor so that they are less dependent on high-quality, expert-labelled training data. The proposed transfer learning strategy re-formulates the original RL problem for task amenability in a meta-reinforcement learning (meta-RL) framework. The resulting algorithm facilitates efficient adaptation of the agent to different definitions of image quality, each with its own Markov decision process environment including different images, labels and an adaptable task predictor. Our work demonstrates that the IQA agents pre-trained on non-expert task labels can be adapted to predict task amenability as defined by expert task labels, using only a small set of expert labels. Using 6644 clinical ultrasound images from 249 prostate cancer patients, our results for image classification and segmentation tasks show that the proposed IQA method can be adapted using data with as few as respective 19.7% and 29.6% expert-reviewed consensus labels and still achieve comparable IQA and task performance, which would otherwise require a training dataset with 100% expert labels.
An important scenario for image quality assessment (IQA) is to evaluate image restoration (IR) algorithms. The state-of-the-art approaches adopt a full-reference paradigm that compares restored images with their corresponding pristine-quality images. However, pristine-quality images are usually unavailable in blind image restoration tasks and real-world scenarios. In this paper, we propose a practical solution named degraded-reference IQA (DR-IQA), which exploits the inputs of IR models, degraded images, as references. Specifically, we extract reference information from degraded images by distilling knowledge from pristine-quality images. The distillation is achieved through learning a reference space, where various degraded images are encouraged to share the same feature statistics with pristine-quality images. And the reference space is optimized to capture deep image priors that are useful for quality assessment. Note that pristine-quality images are only used during training. Our work provides a powerful and differentiable metric for blind IRs, especially for GAN-based methods. Extensive experiments show that our results can even be close to the performance of full-reference settings.
The explosive growth of image data facilitates the fast development of image processing and computer vision methods for emerging visual applications, meanwhile introducing novel distortions to the processed images. This poses a grand challenge to existing blind image quality assessment (BIQA) models, failing to continually adapt to such subpopulation shift. Recent work suggests training BIQA methods on the combination of all available human-rated IQA datasets. However, this type of approach is not scalable to a large number of datasets, and is cumbersome to incorporate a newly created dataset as well. In this paper, we formulate continual learning for BIQA, where a model learns continually from a stream of IQA datasets, building on what was learned from previously seen data. We first identify five desiderata in the new setting with a measure to quantify the plasticity-stability trade-off. We then propose a simple yet effective method for learning BIQA models continually. Specifically, based on a shared backbone network, we add a prediction head for a new dataset, and enforce a regularizer to allow all prediction heads to evolve with new data while being resistant to catastrophic forgetting of old data. We compute the quality score by an adaptive weighted summation of estimates from all prediction heads. Extensive experiments demonstrate the promise of the proposed continual learning method in comparison to standard training techniques for BIQA.