Do you want to publish a course? Click here

Isovector electromagnetic form factors of the nucleon from lattice QCD and the proton radius puzzle

72   0   0.0 ( 0 )
 Added by Dalibor Djukanovic
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We present results for the isovector electromagnetic form factors of the nucleon computed on the CLS ensembles with $N_f=2+1$ flavors of $mathcal{O}(a)$-improved Wilson fermions and an $mathcal{O}(a)$-improved vector current. The analysis includes ensembles with four lattice spacings and pion masses ranging from 130 MeV up to 350 MeV and mainly targets the low-$Q^2$ region. In order to remove any bias from unsuppressed excited-state contributions, we investigate several source-sink separations between 1.0 fm and 1.5 fm and apply the summation method as well as explicit two-state fits. The chiral interpolation is performed by applying covariant chiral perturbation theory including vector mesons directly to our form factor data, thus avoiding an auxiliary parametrization of the $Q^2$ dependence. At the physical point, we obtain $mu=4.71(11)_{mathrm{stat}}(13)_{mathrm{sys}}$ for the nucleon isovector magnetic moment, in good agreement with the experimental value and $langle r_mathrm{M}^2rangle~=~0.661(30)_{mathrm{stat}}(11)_{mathrm{sys}},~mathrm{fm}^2$ for the corresponding square-radius, again in good agreement with the value inferred from the $ep$-scattering determination [Bernauer et~al., Phys. Rev. Lett., 105, 242001 (2010)] of the proton radius. Our estimate for the isovector electric charge radius, $langle r_mathrm{E}^2rangle = 0.800(25)_{mathrm{stat}}(22)_{mathrm{sys}},~mathrm{fm}^2$, however, is in slight tension with the larger value inferred from the aforementioned $ep$-scattering data, while being in agreement with the value derived from the 2018 CODATA average for the proton charge radius.



rate research

Read More

107 - C. Alexandrou 2006
We evaluate the isovector nucleon electromagnetic form factors in quenched and full QCD on the lattice using Wilson fermions. In the quenched theory we use a lattice of spatial size 3 fm at beta=6.0 enabling us to reach low momentum transfers and a lowest pion mass of about 400 MeV. In the full theory we use a lattice of spatial size 1.9 fm at beta=5.6 and lowest pion mass of about 380 MeV enabling comparison with the results obtained in the quenched theory. We compare our lattice results to the isovector part of the experimentally measured form factors.
100 - C. Alexandrou 2018
The electromagnetic form factors of the proton and the neutron are computed within lattice QCD using simulations with quarks masses fixed to their physical values. Both connected and disconnected contributions are computed. We analyze two new ensembles of $N_f = 2$ and $N_f = 2 + 1 + 1$ twisted mass clover-improved fermions and determine the proton and neutron form factors, the electric and magnetic radii, and the magnetic moments. We use several values of the sink-source time separation in the range of 1.0 fm to 1.6 fm to ensure ground state identification. Disconnected contributions are calculated to an unprecedented accuracy at the physical point. Although they constitute a small correction, they are non-negligible and contribute up to 15% for the case of the neutron electric charge radius.
We present lattice QCD calculations of nucleon electromagnetic form factors using pion masses $m_pi$ = 149, 202, and 254 MeV and an action with clover-improved Wilson quarks coupled to smeared gauge fields, as used by the Budapest-Marseille-Wuppertal collaboration. Particular attention is given to removal of the effects of excited state contamination by calculation at three source-sink separations and use of the summation and generalized pencil-of-function methods. The combination of calculation at the nearly physical mass $m_pi$ = 149 MeV in a large spatial volume ($m_pi L_s$ = 4.2) and removal of excited state effects yields agreement with experiment for the electric and magnetic form factors $G_E(Q^2)$ and $G_M(Q^2)$ up to $Q^2$ = 0.5 GeV$^2$.
213 - C. Alexandrou 2011
We present results on the nucleon electromagnetic form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cut-off effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 and a=0.056 fm. The nucleon magnetic moment, Dirac and Pauli radii are obtained in the continuum limit and chirally extrapolated to the physical pion mass allowing for a comparison with experiment.
252 - C. Alexandrou 2010
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects are investigated using three different values of the lattice spacings, namely $a=0.089$ fm, $a=0.070$ fm and $a=0.056$ fm. The nucleon axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass enabling comparison with experiment.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا