Log K-stability of GIT-stable divisors on Fano manifolds


Abstract in English

For a given K-polystable Fano manifold X and a natural number l, we show that there exists a rational number 0 < c < 1 depending only on the dimension of X, such that $Din |-lK_X|$ is GIT-(semi/poly)stable under the action of Aut(X) if and only if the pair $(X, frac{epsilon}{l} D)$ is K-(semi/poly)stable for some rational $0 < {epsilon} < c$.

Download