Do you want to publish a course? Click here

Reconfigurable Intelligent Surface Aided Mobile Edge Computing: From Optimization-Based to Location-Only Learning-Based Solutions

85   0   0.0 ( 0 )
 Added by Xiaoyan Hu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we explore optimization-based and data-driven solutions in a reconfigurable intelligent surface (RIS)-aided multi-user mobile edge computing (MEC) system, where the user equipment (UEs) can partially offload their computation tasks to the access point (AP). We aim at maximizing the total completed task-input bits (TCTB) of all UEs with limited energy budgets during a given time slot, through jointly optimizing the RIS reflecting coefficients, the APs receive beamforming vectors, and the UEs energy partition strategies for local computing and offloading. A three-step block coordinate descending (BCD) algorithm is first proposed to effectively solve the non-convex TCTB maximization problem with guaranteed convergence. In order to reduce the computational complexity and facilitate lightweight online implementation of the optimization algorithm, we further construct two deep learning architectures. The first one takes channel state information (CSI) as input, while the second one exploits the UEs locations only for online inference. The two data-driven approaches are trained using data samples generated by the BCD algorithm via supervised learning. Our simulation results reveal a close match between the performance of the optimization-based BCD algorithm and the low-complexity learning-based architectures, all with superior performance to existing schemes in both cases with perfect and imperfect input features. Importantly, the location-only deep learning method is shown to offer a particularly practical and robust solution alleviating the need for CSI estimation and feedback when line-of-sight (LoS) direct links exist between UEs and the AP.



rate research

Read More

126 - Tong Bai , Cunhua Pan , Chao Han 2021
Given the proliferation of wireless sensors and smart mobile devices, an explosive escalation of the volume of data is anticipated. However, restricted by their limited physical sizes and low manufacturing costs, these wireless devices tend to have limited computational capabilities and battery lives. To overcome this limitation, wireless devices may offload their computational tasks to the nearby computing nodes at the network edge in mobile edge computing (MEC). At the time of writing, the benefits of MEC systems have not been fully exploited, predominately because the computation offloading link is still far from perfect. In this article, we propose to enhance MEC systems by exploiting the emerging technique of reconfigurable intelligent surfaces (RIS), which are capable of `reconfiguring the wireless propagation environments, hence enhancing the offloading links. The benefits of RISs can be maximized by jointly optimizing both the RISs as well as the communications and computing resource allocations of MEC systems. Unfortunately, this joint optimization imposes new research challenges on the system design. Against this background, this article provides an overview of RIS-assisted MEC systems and highlights their four use cases as well as their design challenges and solutions. Finally, their performance is characterized with the aid of a specific case study, followed by a range of future research ideas.
Reconfigurable intelligent surface (RIS) technology has recently emerged as a spectral- and cost-efficient approach for wireless communications systems. However, existing hand-engineered schemes for passive beamforming design and optimization of RIS, such as the alternating optimization (AO) approaches, require a high computational complexity, especially for multiple-input-multiple-output (MIMO) systems. To overcome this challenge, we propose a low-complexity unsupervised learning scheme, referred to as learning-phase-shift neural network (LPSNet), to efficiently find the solution to the spectral efficiency maximization problem in RIS-aided MIMO systems. In particular, the proposed LPSNet has an optimized input structure and requires a small number of layers and nodes to produce efficient phase shifts for the RIS. Simulation results for a 16x2 MIMO system assisted by an RIS with 40 elements show that the LPSNet achieves 97.25% of the SE provided by the AO counterpart with more than a 95% reduction in complexity.
99 - Tong Bai , Cunhua Pan , Hong Ren 2020
Wireless powered mobile edge computing (WP-MEC) has been recognized as a promising technique to provide both enhanced computational capability and sustainable energy supply to massive low-power wireless devices. However, its energy consumption becomes substantial, when the transmission link used for wireless energy transfer (WET) and for computation offloading is hostile. To mitigate this hindrance, we propose to employ the emerging technique of intelligent reflecting surface (IRS) in WP-MEC systems, which is capable of providing an additional link both for WET and for computation offloading. Specifically, we consider a multi-user scenario where both the WET and the computation offloading are based on orthogonal frequency-division multiplexing (OFDM) systems. Built on this model, an innovative framework is developed to minimize the energy consumption of the IRS-aided WP-MEC network, by optimizing the power allocation of the WET signals, the local computing frequencies of wireless devices, both the sub-band-device association and the power allocation used for computation offloading, as well as the IRS reflection coefficients. The major challenges of this optimization lie in the strong coupling between the settings of WET and of computing as well as the unit-modules constraint on IRS reflection coefficients. To tackle these issues, the technique of alternative optimization is invoked for decoupling the WET and computing designs, while two sets of locally optimal IRS reflection coefficients are provided for WET and for computation offloading separately relying on the successive convex approximation method. The numerical results demonstrate that our proposed scheme is capable of monumentally outperforming the conventional WP-MEC network without IRSs.
A novel non-orthogonal multiple access (NOMA) based cache-aided mobile edge computing (MEC) framework is proposed. For the purpose of efficiently allocating communication and computation resources to users computation tasks requests, we propose a long-short-term memory (LSTM) network to predict the task popularity. Based on the predicted task popularity, a long-term reward maximization problem is formulated that involves a joint optimization of the task offloading decisions, computation resource allocation, and caching decisions. To tackle this challenging problem, a single-agent Q-learning (SAQ-learning) algorithm is invoked to learn a long-term resource allocation strategy. Furthermore, a Bayesian learning automata (BLA) based multi-agent Q-learning (MAQ-learning) algorithm is proposed for task offloading decisions. More specifically, a BLA based action select scheme is proposed for the agents in MAQ-learning to select the optimal action in every state. We prove that the BLA based action selection scheme is instantaneously self-correcting and the selected action is an optimal solution for each state. Extensive simulation results demonstrate that: 1) The prediction error of the proposed LSTMs based task popularity prediction decreases with increasing learning rate. 2) The proposed framework significantly outperforms the benchmarks like all local computing, all offloading computing, and non-cache computing. 3) The proposed BLA based MAQ-learning achieves an improved performance compared to conventional reinforcement learning algorithms.
Reconfigurable intelligent surface (RIS) has emerged as a promising technology for achieving high spectrum and energy efficiency in future wireless communication networks. In this paper, we investigate an RIS-aided single-cell multi-user mobile edge computing (MEC) system where an RIS is deployed to support the communication between a base station (BS) equipped with MEC servers and multiple single-antenna users. To utilize the scarce frequency resource efficiently, we assume that users communicate with BS based on a non-orthogonal multiple access (NOMA) protocol. Each user has a computation task which can be computed locally or partially/fully offloaded to the BS. We aim to minimize the sum energy consumption of all users by jointly optimizing the passive phase shifters, the size of transmission data, transmission rate, power control, transmission time and the decoding order. Since the resulting problem is non-convex, we use the block coordinate descent method to alternately optimize two separated subproblems. More specifically, we use the dual method to tackle a subproblem with given phase shift and obtain the closed-form solution; and then we utilize penalty method to solve another subproblem for given power control. Moreover, in order to demonstrate the effectiveness of our proposed algorithm, we propose three benchmark schemes: the time-division multiple access (TDMA)-MEC scheme, the full local computing scheme and the full offloading scheme. We use an alternating 1-D search method and the dual method that can solve the TDMA-based transmission problem well. Numerical results demonstrate that the proposed scheme can increase the energy efficiency and achieve significant performance gains over the three benchmark schemes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا