No Arabic abstract
Building on recent work by Chandar et al. (2020), we construct X-ray luminosity functions (XLFs) for different classes of X-ray binary (XRB) donors in the nearby star-forming galaxy M83 through a novel methodology: rather than classifying low- vs. high-mass XRBs based on the scaling of the number of X-ray sources with stellar mass and star formation rate, respectively, we utilize multi-band Hubble Space Telescope imaging data to classify each Chandra-detected compact X-ray source as a low-mass (i.e. donor mass <~ 3 solar masses), high-mass (donor mass >~ 8 solar masses) or intermediate-mass XRB based on either the location of its candidate counterpart on optical color-magnitude diagrams or the age of its host star cluster. In addition to the the standard (single and/or truncated) power-law functional shape, we approximate the resulting XLFs with a Schechter function. We identify a marginally significant (at the 1-to-2 sigma level) exponential downturn for the high-mass XRB XLF, at logLx ~ 38.48^{+0.52}_{-0.33} (in log CGS units). In contrast, the low- and intermediate-mass XRB XLFs, as well as the total XLF of M83, are formally consistent with sampling statistics from a single power-law. Our method suggests a non-negligible contribution from low- and possibly intermediate-mass XRBs to the total XRB XLF of M83, i.e. between 20 and 50%, in broad agreement with X-ray based XLFs. More generally, we caution against considerable contamination from X-ray emitting supernova remnants to the published, X-ray based XLFs of M83, and possibly all actively star-forming galaxies.
We present a comparison of X-ray and optical luminosities and luminosity functions of cluster candidates from a joint optical/X-ray survey, the ROSAT Optical X-Ray Survey. Completely independent X-ray and optical catalogs of 23 ROSAT fields (4.8 deg2) were created by a matched-filter optical algorithm and by a wavelet technique in the X-ray. We directly compare the results of the optical and X-ray selection techniques. The matched-filter technique detected 74% (26 out of 35) of the most reliable cluster candidates in the X-ray-selected sample; the remainder could be either constellations of X-ray point sources or z>1 clusters. The matched-filter technique identified approximately 3 times the number of candidates (152 candidates) found in the X-ray survey of nearly the same sky (57 candidates). While the estimated optical and X-ray luminosities of clusters of galaxies are correlated, the intrinsic scatter in this relationship is very large. We can reproduce the number and distribution of optical clusters with a model defined by the X-ray luminosity function and by an LX Lambda cl relation if H0=75 km s-1 Mpc-1 and if the LX Lambda cl relation is steeper than the expected LX Lambda 2cl. On statistical grounds, a bimodal distribution of X-ray luminous and X-ray faint clusters is unnecessary to explain our observations. Follow-up work is required to confirm whether the clusters without bright X-ray counterparts are simply X-ray faint for their optical luminosity because of their low mass or youth or are a distinct population of clusters that do not, for some reason, have dense intracluster media. We suspect that these optical clusters are low-mass systems, with correspondingly low X-ray temperatures and luminosities, or that they are not yet completely virialized systems.
The X-ray luminosity functions of galaxies have become a useful tool for population studies of X-ray binaries in them. The availability of long term light-curves of X-ray binaries with the All Sky X-ray Monitors opens up the possibility of constructing X-ray luminosity functions, by also including the intensity variation effects of the galactic X-ray binaries. We have constructed multiple realizations of the X-ray luminosity functions (XLFs) of Milky Way, using the long term light-curves of sources obtained in the 2-10 keV energy band with the RXTE-ASM. The observed spread seen in the value of slope of both HMXB and LMXB XLFs are due to inclusion of variable luminosities of X-ray binaries in construction of these XLFs as well as finite sample effects. XLFs constructed for galactic HMXBs in the luminosity range 10^{36} - 10^{39} erg/sec is described by a power-law model with a mean power-law index of -0.48 and a spread due to variability of HMXBs as 0.19. XLFs constructed for galactic LMXBs in the luminosity range 10^{36} - 10^{39} erg/sec has a shape of cut-off power-law with mean power-law index of -0.31 and a spread due to variability of LMXBs as 0.07.
We have obtained three epochs of Chandra ACIS-I observations (totaling $sim$184 ks) of the nearby spiral galaxy NGC~300 to study the logN-logS distributions of its X-ray point source population down to $sim$2$times$10$^{-15}$ erg s$^{-1}$ cm$^{-2}$ in the 0.35-8 keV band (equivalent to $sim$10$^{36}$ erg s$^{-1}$). The individual epoch logN-logS distributions are best described as the sum of a background AGN component, a simple power law, and a broken power law, with the shape of the logN-logS distributions sometimes varying between observations. The simple power law and AGN components produce a good fit for persistent sources (i.e., with fluxes that remain constant within a factor of $sim$2). The differential power law index of $sim$1.2 and high fluxes suggest that the persistent sources intrinsic to NGC~300 are dominated by Roche lobe overflowing low mass X-ray binaries. The variable X-ray sources are described by a broken power law, with a faint-end power law index of $sim$1.7, a bright-end index of $sim$2.8-4.9, and a break flux of $sim$8$times10^{-15}$ erg s$^{-1}$ cm$^{-2}$ ($sim$4$times10^{36}$ erg s$^{-1}$), suggesting they are mostly outbursting, wind-fed high mass X-ray binaries, although the logN-logS distribution of variable sources likely also contains low-mass X-ray binaries. We generate model logN-logS distributions for synthetic X-ray binaries and constrain the distribution of maximum X-ray fluxes attained during outburst. Our observations suggest that the majority of outbursting X-ray binaries occur at sub-Eddington luminosities, where mass transfer likely occurs through direct wind accretion at $sim$1-3% of the Eddington rate.
Disc instability models predict that for X-ray binaries in quiescence, there should be a brightening of the optical flux prior to an X-ray outburst. Tracking the X-ray variations of X-ray binaries in quiescence is generally not possible, so optical monitoring provides the best means to measure the mass accretion rate variability between outbursts, and to identify the beginning stages of new outbursts. With our regular Faulkes Telescope/Las Cumbres Observatory (LCO) monitoring we are routinely detecting the optical rise of new X-ray binary outbursts before they are detected by X-ray all-sky monitors. We present examples of detections of an optical rise in X-ray binaries prior to X-ray detection. We also present initial optical monitoring of the new black hole transient MAXI J1820+070 (ASASSN-18ey) with the Faulkes, LCO telescopes and Al Sadeem Observatory in Abu Dhabi, UAE. Finally, we introduce our new real-time data analysis pipeline, the X-ray Binary New Early Warning System (XB-NEWS) which aims to detect and announce new X-ray binary outbursts within a day of first optical detection. This will allow us to trigger X-ray and multi-wavelength campaigns during the very early stages of outbursts, to constrain the outburst triggering mechanism.
We consider implications of our new model of quasar lifetimes and light curves for the quasar luminosity function (LF) at different frequencies and redshifts. In our picture, quasars evolve rapidly and the lifetime depends on both their instantaneous and peak luminosities. The bright end of the LF traces the peak intrinsic quasar activity, but the faint end consists of quasars which are either undergoing exponential growth to much larger masses and luminosities, or are in sub-Eddington quiescent states going into or coming out of a period of peak activity. The break in the observed LF corresponds directly to the maximum in the intrinsic distribution of peak luminosities, which falls off at both brighter and fainter luminosities. We study this model using simulations of galaxy mergers which successfully reproduce a wide range of observed quasar phenomena, including the observed column density distribution. By combining quasar lifetimes and the distribution of maximum quasar luminosities determined from the observed hard X-ray LF with the corresponding luminosity and host-system dependent column densities, we produce the expected soft X-ray and B-band LFs. Our predictions agree exceptionally well with the observed LFs at all observed luminosities, over the redshift range considered (z < 1), without invoking any ad hoc assumptions about an obscured population of sources. Our results also suggest that observed correlations in hard X-ray samples between the obscured fraction of quasars and luminosity can be explained in the context of our model by the expulsion of surrounding gas due to heating from accretion feedback energy as a quasar nears its peak luminosity and final black hole mass.