Do you want to publish a course? Click here

Efficient Selection Between Hierarchical Cognitive Models: Cross-validation With Variational Bayes

82   0   0.0 ( 0 )
 Added by Viet Hung Dao
 Publication date 2021
and research's language is English
 Authors Viet-Hung Dao




Ask ChatGPT about the research

Model comparison is the cornerstone of theoretical progress in psychological research. Common practice overwhelmingly relies on tools that evaluate competing models by balancing in-sample descriptive adequacy against model flexibility, with modern approaches advocating the use of marginal likelihood for hierarchical cognitive models. Cross-validation is another popular approach but its implementation has remained out of reach for cognitive models evaluated in a Bayesian hierarchical framework, with the major hurdle being prohibitive computational cost. To address this issue, we develop novel algorithms that make variational Bayes (VB) inference for hierarchical models feasible and computationally efficient for complex cognitive models of substantive theoretical interest. It is well known that VB produces good estimates of the first moments of the parameters which gives good predictive densities estimates. We thus develop a novel VB algorithm with Bayesian prediction as a tool to perform model comparison by cross-validation, which we refer to as CVVB. In particular, the CVVB can be used as a model screening device that quickly identifies bad models. We demonstrate the utility of CVVB by revisiting a classic question in decision making research: what latent components of processing drive the ubiquitous speed-accuracy tradeoff? We demonstrate that CVVB strongly agrees with model comparison via marginal likelihood yet achieves the outcome in much less time. Our approach brings cross-validation within reach of theoretically important psychological models, and makes it feasible to compare much larger families of hierarchically specified cognitive models than has previously been possible.



rate research

Read More

We consider Bayesian high-dimensional mediation analysis to identify among a large set of correlated potential mediators the active ones that mediate the effect from an exposure variable to an outcome of interest. Correlations among mediators are commonly observed in modern data analysis; examples include the activated voxels within connected regions in brain image data, regulatory signals driven by gene networks in genome data and correlated exposure data from the same source. When correlations are present among active mediators, mediation analysis that fails to account for such correlation can be sub-optimal and may lead to a loss of power in identifying active mediators. Building upon a recent high-dimensional mediation analysis framework, we propose two Bayesian hierarchical models, one with a Gaussian mixture prior that enables correlated mediator selection and the other with a Potts mixture prior that accounts for the correlation among active mediators in mediation analysis. We develop efficient sampling algorithms for both methods. Various simulations demonstrate that our methods enable effective identification of correlated active mediators, which could be missed by using existing methods that assume prior independence among active mediators. The proposed methods are applied to the LIFECODES birth cohort and the Multi-Ethnic Study of Atherosclerosis (MESA) and identified new active mediators with important biological implications.
Marketing mix models (MMMs) are statistical models for measuring the effectiveness of various marketing activities such as promotion, media advertisement, etc. In this research, we propose a comprehensive marketing mix model that captures the hierarchical structure and the carryover, shape and scale effects of certain marketing activities, as well as sign restrictions on certain coefficients that are consistent with common business sense. In contrast to commonly adopted approaches in practice, which estimate parameters in a multi-stage process, the proposed approach estimates all the unknown parameters/coefficients simultaneously using a constrained maximum likelihood approach and solved with the Hamiltonian Monte Carlo algorithm. We present results on real datasets to illustrate the use of the proposed solution algorithm.
The test of homogeneity for normal mixtures has been conducted in diverse research areas, but constructing a theory of the test of homogeneity is challenging because the parameter set for the null hypothesis corresponds to singular points in the parameter space. In this paper, we examine this problem from a new perspective and offer a theory of hypothesis testing for homogeneity based on a variational Bayes framework. In the conventional theory, the constant order term of the free energy has remained unknown, however, we clarify its asymptotic behavior because it is necessary for constructing a hypothesis test. Numerical experiments shows the validity of our theoretical results.
Probabilistic regression models typically use the Maximum Likelihood Estimation or Cross-Validation to fit parameters. Unfortunately, these methods may give advantage to the solutions that fit observations in average, but they do not pay attention to the coverage and the width of Prediction Intervals. In this paper, we address the question of adjusting and calibrating Prediction Intervals for Gaussian Processes Regression. First we determine the models parameters by a standard Cross-Validation or Maximum Likelihood Estimation method then we adjust the parameters to assess the optimal type II Coverage Probability to a nominal level. We apply a relaxation method to choose parameters that minimize the Wasserstein distance between the Gaussian distribution of the initial parameters (Cross-Validation or Maximum Likelihood Estimation) and the proposed Gaussian distribution among the set of parameters that achieved the desired Coverage Probability.
90 - Chenchen Ma , Gongjun Xu 2021
Cognitive Diagnosis Models (CDMs) are a special family of discrete latent variable models widely used in educational, psychological and social sciences. In many applications of CDMs, certain hierarchical structures among the latent attributes are assumed by researchers to characterize their dependence structure. Specifically, a directed acyclic graph is used to specify hierarchical constraints on the allowable configurations of the discrete latent attributes. In this paper, we consider the important yet unaddressed problem of testing the existence of latent hierarchical structures in CDMs. We first introduce the concept of testability of hierarchical structures in CDMs and present sufficient conditions. Then we study the asymptotic behaviors of the likelihood ratio test (LRT) statistic, which is widely used for testing nested models. Due to the irregularity of the problem, the asymptotic distribution of LRT becomes nonstandard and tends to provide unsatisfactory finite sample performance under practical conditions. We provide statistical insights on such failures, and propose to use parametric bootstrap to perform the testing. We also demonstrate the effectiveness and superiority of parametric bootstrap for testing the latent hierarchies over non-parametric bootstrap and the naive Chi-squared test through comprehensive simulations and an educational assessment dataset.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا