Do you want to publish a course? Click here

Learning Deep Neural Networks under Agnostic Corrupted Supervision

246   0   0.0 ( 0 )
 Added by Boyang Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Training deep neural models in the presence of corrupted supervision is challenging as the corrupted data points may significantly impact the generalization performance. To alleviate this problem, we present an efficient robust algorithm that achieves strong guarantees without any assumption on the type of corruption and provides a unified framework for both classification and regression problems. Unlike many existing approaches that quantify the quality of the data points (e.g., based on their individual loss values), and filter them accordingly, the proposed algorithm focuses on controlling the collective impact of data points on the average gradient. Even when a corrupted data point failed to be excluded by our algorithm, the data point will have a very limited impact on the overall loss, as compared with state-of-the-art filtering methods based on loss values. Extensive experiments on multiple benchmark datasets have demonstrated the robustness of our algorithm under different types of corruption.

rate research

Read More

73 - Guy Uziel 2019
Deep neural networks are considered to be state of the art models in many offline machine learning tasks. However, their performance and generalization abilities in online learning tasks are much less understood. Therefore, we focus on online learning and tackle the challenging problem where the underlying process is stationary and ergodic and thus removing the i.i.d. assumption and allowing observations to depend on each other arbitrarily. We prove the generalization abilities of Lipschitz regularized deep neural networks and show that by using those networks, a convergence to the best possible prediction strategy is guaranteed.
403 - Ozsel Kilinc , Ismail Uysal 2018
In this paper, we propose a novel unsupervised clustering approach exploiting the hidden information that is indirectly introduced through a pseudo classification objective. Specifically, we randomly assign a pseudo parent-class label to each observation which is then modified by applying the domain specific transformation associated with the assigned label. Generated pseudo observation-label pairs are subsequently used to train a neural network with Auto-clustering Output Layer (ACOL) that introduces multiple softmax nodes for each pseudo parent-class. Due to the unsupervised objective based on Graph-based Activity Regularization (GAR) terms, softmax duplicates of each parent-class are specialized as the hidden information captured through the help of domain specific transformations is propagated during training. Ultimately we obtain a k-means friendly latent representation. Furthermore, we demonstrate how the chosen transformation type impacts performance and helps propagate the latent information that is useful in revealing unknown clusters. Our results show state-of-the-art performance for unsupervised clustering tasks on MNIST, SVHN and USPS datasets, with the highest accuracies reported to date in the literature.
Modern deep learning methods have equipped researchers and engineers with incredibly powerful tools to tackle problems that previously seemed impossible. However, since deep learning methods operate as black boxes, the uncertainty associated with their predictions is often challenging to quantify. Bayesian statistics offer a formalism to understand and quantify the uncertainty associated with deep neural networks predictions. This paper provides a tutorial for researchers and scientists who are using machine learning, especially deep learning, with an overview of the relevant literature and a complete toolset to design, implement, train, use and evaluate Bayesian neural networks.
Learning Rate (LR) is an important hyper-parameter to tune for effective training of deep neural networks (DNNs). Even for the baseline of a constant learning rate, it is non-trivial to choose a good constant value for training a DNN. Dynamic learning rates involve multi-step tuning of LR values at various stages of the training process and offer high accuracy and fast convergence. However, they are much harder to tune. In this paper, we present a comprehensive study of 13 learning rate functions and their associated LR policies by examining their range parameters, step parameters, and value update parameters. We propose a set of metrics for evaluating and selecting LR policies, including the classification confidence, variance, cost, and robustness, and implement them in LRBench, an LR benchmarking system. LRBench can assist end-users and DNN developers to select good LR policies and avoid bad LR policies for training their DNNs. We tested LRBench on Caffe, an open source deep learning framework, to showcase the tuning optimization of LR policies. Evaluated through extensive experiments, we attempt to demystify the tuning of LR policies by identifying good LR policies with effective LR value ranges and step sizes for LR update schedules.
68 - Jed Mills , Jia Hu , Geyong Min 2020
Federated Learning (FL) is an emerging approach for collaboratively training Deep Neural Networks (DNNs) on mobile devices, without private user data leaving the devices. Previous works have shown that non-Independent and Identically Distributed (non-IID) user data harms the convergence speed of the FL algorithms. Furthermore, most existing work on FL measures global-model accuracy, but in many cases, such as user content-recommendation, improving individual User model Accuracy (UA) is the real objective. To address these issues, we propose a Multi-Task FL (MTFL) algorithm that introduces non-federated Batch-Normalization (BN) layers into the federated DNN. MTFL benefits UA and convergence speed by allowing users to train models personalised to their own data. MTFL is compatible with popular iterative FL optimisation algorithms such as Federated Averaging (FedAvg), and we show empirically that a distributed form of Adam optimisation (FedAvg-Adam) benefits convergence speed even further when used as the optimisation strategy within MTFL. Experiments using MNIST and CIFAR10 demonstrate that MTFL is able to significantly reduce the number of rounds required to reach a target UA, by up to $5times$ when using existing FL optimisation strategies, and with a further $3times$ improvement when using FedAvg-Adam. We compare MTFL to competing personalised FL algorithms, showing that it is able to achieve the best UA for MNIST and CIFAR10 in all considered scenarios. Finally, we evaluate MTFL with FedAvg-Adam on an edge-computing testbed, showing that its convergence and UA benefits outweigh its overhead.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا