Do you want to publish a course? Click here

Performance of the CMS Zero Degree Calorimeters in pPb collisions at the LHC

94   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English
 Authors O. Suranyi




Ask ChatGPT about the research

The two Zero Degree Calorimeters (ZDCs) of the CMS experiment are located at $pm 140~$m from the collision point and detect neutral particles in the $|eta| > 8.3$ pseudorapidity region. This paper presents a study on the performance of the ZDC in the 2016 pPb run. The response of the detectors to ultrarelativistic neutrons is studied using in-depth Monte Carlo simulations. A method of signal extraction based on template fits is presented, along with a dedicated calibration procedure. A deconvolution technique for the correction of overlapping collision events is discussed.



rate research

Read More

115 - O A Grachov , M Murray , J Snyder 2008
The combined zero degree calorimeter (ZDC) is a combination of sampling quartz/tungsten electromagnetic and hadronic calorimeters. Two identical combined calorimeters are located in the LHC tunnel at CERN at the straight section ~140 m on each side of the CMS interaction vertex and between the two beam pipes. They will detect very forward photons and neutrons. ZDC information can be used for a variety of physics measurements as well as improving the collision centrality determination in heavy-ion collisions. Results are presented for ZDC performance studies with the CERN SPS H2 test beam.
We report on the expected sensitivity of dedicated scintillator-based detectors at the LHC for elementary particles with charges much smaller than the electron charge. The dataset provided by a prototype scintillator-based detector is used to characterise the performance of the detector and provide an accurate background projection. Detector designs, including a novel slab detector configuration, are considered for the data taking period of the LHC to start in 2022 (Run 3) and for the high luminosity LHC. With the Run 3 dataset, the existence of new particles with masses between 10 MeV and 45 GeV could be excluded at 95% confidence level for charges between 0.003e and 0.3e, depending on their mass. With the high luminosity LHC dataset, the expected limits would reach between 10 MeV and 80 GeV for charges between 0.0018e and 0.3e, depending on their mass
The facilities designed to study collisions of relativistic nuclei, such as the MPD at NICA (JINR), STAR at RHIC (BNL), ALICE, ATLAS and CMS at the LHC (CERN), are equipped with pairs of hadronic Zero Degree Calorimeters (ZDC) to detect forward nucleons at the both sides of the interaction point and estimate the collision centrality. The energy deposited in a ZDC fluctuates from one event to another, but on average it is proportional to the number of absorbed nucleons. Forward nucleons are also emitted in electromagnetic dissociation (EMD) of nuclei in ultraperipheral collisions, and they are used to monitor the luminosity. As known, ZDC energy spectra are specific to each facility, because they are affected by the ZDC acceptance, and the ZDC energy resolution depends on the beam energy. In this work a simple combinatorial model leading to handy formulas has been proposed to connect the numbers of emitted and detected forward nucleons taking into account a limited ZDC acceptance. The ZDC energy spectra from the EMD with the emission of one, two, three and four forward neutrons and protons have been modeled for collision energies of NICA and the LHC. The case of a rather small ZDC acceptance has been investigated and a possibility to measure the inclusive nucleon emission cross section has been demonstrated.
The path taken by the LHC team to reach 3.6 10$^{33}$ cm$^{-2}$ s$^{-1}$ instantaneous luminosity, and to deliver 5.6 fb$^{-1}$ per experiment is summarized. The main performances of the two experiments are highlighted, in particular the way they managed to cope with the already high level of pile-up. Selected Standard Model and top physics results are given, and the status of the limits on the Higgs boson search by each experiment is summarized. A brief overview of the search for supersymmetry and exotic phenomena is made at the end.
The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area $sim$18 m$^2$, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8 TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb$^{-1}$. No magnetic charge exceeding $0.5g_{rm D}$ (where $g_{rm D}$ is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV$leq m leq$ 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for $1g_{rm D}leq|g|leq 6g_{rm D}$, and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for $1g_{rm D}leq|g|leq 4g_{rm D}$. Under the assumption of Drell-Yan cross sections, mass limits are derived for $|g|=2g_{rm D}$ and $|g|=3g_{rm D}$ for the first time at the LHC, surpassing the results from previous collider experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا