In this study, we focus on improving EUHFORIA (European Heliospheric Forecasting Information Asset), a recently developed 3D MHD space weather prediction tool. EUHFORIA consists of two parts, covering two spatial domains; the solar corona and the inner heliosphere. For the first part, the semi-empirical Wang-Sheeley-Arge (WSA) model is used by default, which employs the Potential Field Source Surface (PFSS) and Schatten Current Sheet (SCS) models to provide the necessary solar wind plasma and magnetic conditions above the solar surface, at 0.1 AU, that serve as boundary conditions for the inner heliospheric part. Herein, we present the first results of the implementation of an alternative coronal model in EUHFORIA, the so-called MULTI-VP model. We compared the output of the default coronal model with the output from MULTI-VP at the inner boundary of the heliospheric domain of EUHFORIA in order to understand differences between the two models, before they propagate to Earth. We also compared the performance of WSA+EUHFORIA-heliosphere and MULTI-VP+EUHFORIA-heliosphere against in situ observations at Earth. In the frame of this study, we considered two different high-speed stream cases, one during a period of low solar activity and one during a period of high solar activity. We also employed two different magnetograms, i.e., GONG and WSO. Our results show that the choice of both the coronal model and the magnetogram play an important role on the accuracy of the solar wind prediction. However, it is not clear which component plays the most important role for the modeled results obtained at Earth. A statistical analysis with an appropriate number of simulations is needed to confirm our findings.