No Arabic abstract
We present the first work-optimal polylogarithmic-depth parallel algorithm for the minimum cut problem on non-sparse graphs. For $mgeq n^{1+epsilon}$ for any constant $epsilon>0$, our algorithm requires $O(m log n)$ work and $O(log^3 n)$ depth and succeeds with high probability. Its work matches the best $O(m log n)$ runtime for sequential algorithms [MN STOC 2020, GMW SOSA 2021]. This improves the previous best work by Geissmann and Gianinazzi [SPAA 2018] by $O(log^3 n)$ factor, while matching the depth of their algorithm. To do this, we design a work-efficient approximation algorithm and parallelize the recent sequential algorithms [MN STOC 2020; GMW SOSA 2021] that exploit a connection between 2-respecting minimum cuts and 2-dimensional orthogonal range searching.
We give an algorithm to find a mincut in an $n$-vertex, $m$-edge weighted directed graph using $tilde O(sqrt{n})$ calls to any maxflow subroutine. Using state of the art maxflow algorithms, this yields a directed mincut algorithm that runs in $tilde O(msqrt{n} + n^2)$ time. This improves on the 30 year old bound of $tilde O(mn)$ obtained by Hao and Orlin for this problem.
We give an $n^{2+o(1)}$-time algorithm for finding $s$-$t$ min-cuts for all pairs of vertices $s$ and $t$ in a simple, undirected graph on $n$ vertices. We do so by constructing a Gomory-Hu tree (or cut equivalent tree) in the same running time, thereby improving on the recent bound of $tilde{O}(n^{2.5})$ by Abboud et al. (FOCS 2021). Our running time is nearly optimal as a function of $n$.
Let $mathcal{D}$ be a set of $n$ disks in the plane. The disk graph $G_mathcal{D}$ for $mathcal{D}$ is the undirected graph with vertex set $mathcal{D}$ in which two disks are joined by an edge if and only if they intersect. The directed transmission graph $G^{rightarrow}_mathcal{D}$ for $mathcal{D}$ is the directed graph with vertex set $mathcal{D}$ in which there is an edge from a disk $D_1 in mathcal{D}$ to a disk $D_2 in mathcal{D}$ if and only if $D_1$ contains the center of $D_2$. Given $mathcal{D}$ and two non-intersecting disks $s, t in mathcal{D}$, we show that a minimum $s$-$t$ vertex cut in $G_mathcal{D}$ or in $G^{rightarrow}_mathcal{D}$ can be found in $O(n^{3/2}text{polylog} n)$ expected time. To obtain our result, we combine an algorithm for the maximum flow problem in general graphs with dynamic geometric data structures to manipulate the disks. As an application, we consider the barrier resilience problem in a rectangular domain. In this problem, we have a vertical strip $S$ bounded by two vertical lines, $L_ell$ and $L_r$, and a collection $mathcal{D}$ of disks. Let $a$ be a point in $S$ above all disks of $mathcal{D}$, and let $b$ a point in $S$ below all disks of $mathcal{D}$. The task is to find a curve from $a$ to $b$ that lies in $S$ and that intersects as few disks of $mathcal{D}$ as possible. Using our improved algorithm for minimum cuts in disk graphs, we can solve the barrier resilience problem in $O(n^{3/2}text{polylog} n)$ expected time.
We study the space complexity of sketching cuts and Laplacian quadratic forms of graphs. We show that any data structure which approximately stores the sizes of all cuts in an undirected graph on $n$ vertices up to a $1+epsilon$ error must use $Omega(nlog n/epsilon^2)$ bits of space in the worst case, improving the $Omega(n/epsilon^2)$ bound of Andoni et al. and matching the best known upper bound achieved by spectral sparsifiers. Our proof is based on a rigidity phenomenon for cut (and spectral) approximation which may be of independent interest: any two $d-$regular graphs which approximate each others cuts significantly better than a random graph approximates the complete graph must overlap in a constant fraction of their edges.
Given a capacitated undirected graph $G=(V,E)$ with a set of terminals $K subset V$, a mimicking network is a smaller graph $H=(V_H,E_H)$ that exactly preserves all the minimum cuts between the terminals. Specifically, the vertex set of the sparsifier $V_H$ contains the set of terminals $K$ and for every bipartition $U, K-U $ of the terminals $K$, the size of the minimum cut separating $U$ from $K-U$ in $G$ is exactly equal to the size of the minimum cut separating $U$ from $K-U$ in $H$. This notion of a mimicking network was introduced by Hagerup, Katajainen, Nishimura and Ragde (1995) who also exhibited a mimicking network of size $2^{2^{k}}$ for every graph with $k$ terminals. The best known lower bound on the size of a mimicking network is linear in the number of terminals. More precisely, the best known lower bound is $k+1$ for graphs with $k$ terminals (Chaudhuri et al. 2000). In this work, we improve both the upper and lower bounds reducing the doubly-exponential gap between them to a single-exponential gap. Specifically, we obtain the following upper and lower bounds on mimicking networks: 1) Given a graph $G$, we exhibit a construction of mimicking network with at most $(|K|-1)$th Dedekind number ($approx 2^{{(k-1)} choose {lfloor {{(k-1)}/2} rfloor}}$) of vertices (independent of size of $V$). Furthermore, we show that the construction is optimal among all {it restricted mimicking networks} -- a natural class of mimicking networks that are obtained by clustering vertices together. 2) There exists graphs with $k$ terminals that have no mimicking network of size smaller than $2^{frac{k-1}{2}}$. We also exhibit improved constructions of mimicking networks for trees and graphs of bounded tree-width.