No Arabic abstract
The ejecta velocities of type-Ia supernovae (SNe Ia), as measured by the Si II $lambda 6355$ line, have been shown to correlate with other supernova properties, including color and standardized luminosity. We investigate these results using the Foundation Supernova Survey, with a spectroscopic data release presented here, and photometry analyzed with the SALT2 light-curve fitter. We find that the Foundation data do not show significant evidence for an offset in color between SNe Ia with high and normal photospheric velocities, with $Delta c = 0.005 pm 0.014$. Our SALT2 analysis does show evidence for redder high-velocity SN Ia in other samples, including objects from the Carnegie Supernova Project, with a combined sample yielding $Delta c = 0.017 pm 0.007$. When split on velocity, the Foundation SN Ia also do not show a significant difference in Hubble diagram residual, $Delta HR = 0.015 pm 0.049$ mag. Intriguingly, we find that SN Ia ejecta velocity information may be gleaned from photometry, particularly in redder optical bands. For high-redshift SN Ia, these rest-frame red wavelengths will be observed by the Nancy Grace Roman Space Telescope. Our results also confirm previous work that SN Ia host-galaxy stellar mass is strongly correlated with ejecta velocity: high-velocity SN Ia are found nearly exclusively in high-stellar-mass hosts. However, host-galaxy properties alone do not explain velocity-dependent differences in supernova colors and luminosities across samples. Measuring and understanding the connection between intrinsic explosion properties and supernova environments, across cosmic time, will be important for precision cosmology with SNe Ia.
We analyse spectroscopic measurements of 122 type Ia supernovae (SNe Ia) with z<0.09 discovered by the Palomar Transient Factory, focusing on the properties of the Si II 6355 and Ca II `near-infrared triplet absorptions. We examine the velocities of the photospheric Si II 6355, and the velocities and strengths of the photospheric and high-velocity Ca II, in the context of the stellar mass (Mstellar) and star-formation rate (SFR) of the SN host galaxies, as well as the position of the SN within its host. We find that SNe Ia with faster Si II 6355 tend to explode in more massive galaxies, with the highest velocity events only occuring in galaxies with Mstellar > 3*10^9 solar mass. We also find some evidence that these highest velocity SNe Ia explode in the inner regions of their host galaxies, similar to the study of Wang et al. (2013), although the trend is not as significant in our data. We show that these trends are consistent with some SN Ia spectral models, if the host galaxy stellar mass is interpreted as a proxy for host galaxy metallicity. We study the strength of the high-velocity component of the Ca II near-IR absorption, and show that SNe Ia with stronger high-velocity components relative to photospheric components are hosted by galaxies with low stellar mass, blue colour, and a high sSFR. Such SNe are therefore likely to arise from the youngest progenitor systems. This argues against a pure orientation effect being responsible for high-velocity features in SN Ia spectra and, when combined with other studies, is consistent with a scenario where high-velocity features are related to an interaction between the SN ejecta and circumstellar medium (CSM) local to the SN.
Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) probe the outermost layers of the explosion, and UV spectra of SNe Ia are expected to be extremely sensitive to differences in progenitor composition and the details of the explosion. Here we present the first study of a sample of high signal-to-noise ratio SN Ia spectra that extend blueward of 2900 A. We focus on spectra taken within 5 days of maximum brightness. Our sample of ten SNe Ia spans the majority of the parameter space of SN Ia optical diversity. We find that SNe Ia have significantly more diversity in the UV than in the optical, with the spectral variance continuing to increase with decreasing wavelengths until at least 1800 A (the limit of our data). The majority of the UV variance correlates with optical light-curve shape, while there are no obvious and unique correlations between spectral shape and either ejecta velocity or host-galaxy morphology. Using light-curve shape as the primary variable, we create a UV spectral model for SNe Ia at peak brightness. With the model, we can examine how individual SNe vary relative to expectations based on only their light-curve shape. Doing this, we confirm an excess of flux for SN 2011fe at short wavelengths, consistent with its progenitor having a subsolar metallicity. While most other SNe Ia do not show large deviations from the model, ASASSN-14lp has a deficit of flux at short wavelengths, suggesting that its progenitor was relatively metal rich.
High-velocity features (HVFs) are spectral features in Type Ia supernovae (SNe Ia) that have minima indicating significantly higher (by greater than about 6000 km/s) velocities than typical photospheric-velocity features (PVFs). The PVFs are absorption features with minima indicating typical photospheric (i.e., bulk ejecta) velocities (usually ~9000-15,000 km/s near B-band maximum brightness). In this work we undertake the most in-depth study of HVFs ever performed. The dataset used herein consists of 445 low-resolution optical and near-infrared (NIR) spectra (at epochs up to 5 d past maximum brightness) of 210 low-redshift SNe Ia that follow the Phillips relation. A series of Gaussian functions is fit to the data in order to characterise possible HVFs of Ca II H&K, Si II {lambda}6355, and the Ca II NIR triplet. The temporal evolution of the velocities and strengths of the PVFs and HVFs of these three spectral features is investigated, as are possible correlations with other SN Ia observables. We find that while HVFs of Ca II are regularly observed (except in underluminous SNe Ia, where they are never found), HVFs of Si II {lambda}6355 are significantly rarer, and they tend to exist at the earliest epochs and mostly in objects with large photospheric velocities. It is also shown that stronger HVFs of Si II {lambda}6355 are found in objects that lack C II absorption at early times and that have red ultraviolet/optical colours near maximum brightness. These results lead to a self-consistent connection between the presence and strength of HVFs of Si II {lambda}6355 and many other mutually correlated SN~Ia observables, including photospheric velocity.
Core-collapse SNe (CCSNe): Systematic searches of radio emission from CCSNe are still lacking, and only targeted searches of radio emission from just some of the optically discovered CCSNe in the local universe have been carried out. Optical searches miss a significant fraction of CCSNe due to dust obscuration; CCSN radio searches are thus more promising for yielding the complete, unobscured star-formation rates in the local universe. The SKA yields the possibility to piggyback for free in this area of research by carrying out commensal, wide-field, blind transient survey observations. SKA1-SUR should be able to discover several hundreds of CCSNe in just one year, compared to about a dozen CCSNe that the VLASS would be able to detect in one year, at most. SKA, with an expected sensitivity ten times that of SKA1, is expected to detect CCSNe in the local Universe by the thousands. Therefore, commensal SKA observations could easily result in an essentially complete census of all CCSNe in the local universe, thus yielding an accurate determination of the volumetric CCSN rate. Type Ia SNe: We advocate for the use of the SKA to search for the putative prompt (~first few days after the explosion) radio emission of any nearby type Ia SN, via target-of-opportunity observations. The huge improvement in sensitivity of the SKA with respect to its predecessors will allow to unambiguously discern which progenitor scenario (single-degenerate vs. double-degenerate) applies to them.
We present extensive optical and near-infrared photometric and spectroscopic observations of the stripped-envelope (SE) supernova SN 2010as. Spectroscopic peculiarities, such as initially weak helium features and low expansion velocities with a nearly flat evolution, place this object in the small family of events previously identified as transitional Type Ib/c supernovae (SNe). There is ubiquitous evidence of hydrogen, albeit weak, in this family of SNe, indicating that they are in fact a peculiar kind of Type IIb SNe that we name flat-velocity Type IIb. The flat velocity evolution---which occurs at different levels between 6000 and 8000 km/s for different SNe---suggests the presence of a dense shell in the ejecta. Despite the spectroscopic similarities, these objects show surprisingly diverse luminosities. We discuss the possible physical or geometrical unification picture for such diversity. Using archival HST images we associate SN 2010as with a massive cluster and derive a progenitor age of ~6 Myr, assuming a single star-formation burst, which is compatible with a Wolf-Rayet progenitor. Our hydrodynamical modelling, on the contrary, indicates the pre-explosion mass was relatively low, of ~4 M_sol. The seeming contradiction between an young age and low pre-SN mass may be solved by a massive interacting binary progenitor.