No Arabic abstract
In this paper, we study the bandits with knapsacks (BwK) problem and develop a primal-dual based algorithm that achieves a problem-dependent logarithmic regret bound. The BwK problem extends the multi-arm bandit (MAB) problem to model the resource consumption associated with playing each arm, and the existing BwK literature has been mainly focused on deriving asymptotically optimal distribution-free regret bounds. We first study the primal and dual linear programs underlying the BwK problem. From this primal-dual perspective, we discover symmetry between arms and knapsacks, and then propose a new notion of sub-optimality measure for the BwK problem. The sub-optimality measure highlights the important role of knapsacks in determining algorithm regret and inspires the design of our two-phase algorithm. In the first phase, the algorithm identifies the optimal arms and the binding knapsacks, and in the second phase, it exhausts the binding knapsacks via playing the optimal arms through an adaptive procedure. Our regret upper bound involves the proposed sub-optimality measure and it has a logarithmic dependence on length of horizon $T$ and a polynomial dependence on $m$ (the numbers of arms) and $d$ (the number of knapsacks). To the best of our knowledge, this is the first problem-dependent logarithmic regret bound for solving the general BwK problem.
Bandits with Knapsacks (BwK) is a general model for multi-armed bandits under supply/budget constraints. While worst-case regret bounds for BwK are well-understood, we present three results that go beyond the worst-case perspective. First, we provide upper and lower bounds which amount to a full characterization for logarithmic, instance-dependent regret rates. Second, we consider simple regret in BwK, which tracks algorithms performance in a given round, and prove that it is small in all but a few rounds. Third, we provide a general reduction from BwK to bandits which takes advantage of some known helpful structure, and apply this reduction to combinatorial semi-bandits, linear contextual bandits, and multinomial-logit bandits. Our results build on the BwK algorithm from citet{AgrawalDevanur-ec14}, providing new analyses thereof.
We consider the linear contextual bandit problem with resource consumption, in addition to reward generation. In each round, the outcome of pulling an arm is a reward as well as a vector of resource consumptions. The expected values of these outcomes depend linearly on the context of that arm. The budget/capacity constraints require that the total consumption doesnt exceed the budget for each resource. The objective is once again to maximize the total reward. This problem turns out to be a common generalization of classic linear contextual bandits (linContextual), bandits with knapsacks (BwK), and the online stochastic packing problem (OSPP). We present algorithms with near-optimal regret bounds for this problem. Our bounds compare favorably to results on the unstructured version of the problem where the relation between the contexts and the outcomes could be arbitrary, but the algorithm only competes against a fixed set of policies accessible through an optimization oracle. We combine techniques from the work on linContextual, BwK, and OSPP in a nontrivial manner while also tackling new difficulties that are not present in any of these special cases.
We unify two prominent lines of work on multi-armed bandits: bandits with knapsacks (BwK) and combinatorial semi-bandits. The former concerns limited resources consumed by the algorithm, e.g., limited supply in dynamic pricing. The latter allows a huge number of actions but assumes combinatorial structure and additional feedback to make the problem tractable. We define a common generalization, support it with several motivating examples, and design an algorithm for it. Our regret bounds are comparable with those for BwK and combinatorial semi- bandits.
In this paper, we consider a very general model for exploration-exploitation tradeoff which allows arbitrary concave rewards and convex constraints on the decisions across time, in addition to the customary limitation on the time horizon. This model subsumes the classic multi-armed bandit (MAB) model, and the Bandits with Knapsacks (BwK) model of Badanidiyuru et al.[2013]. We also consider an extension of this model to allow linear contexts, similar to the linear contextual extension of the MAB model. We demonstrate that a natural and simple extension of the UCB family of algorithms for MAB provides a polynomial time algorithm that has near-optimal regret guarantees for this substantially more general model, and matches the bounds provided by Badanidiyuru et al.[2013] for the special case of BwK, which is quite surprising. We also provide computationally more efficient algorithms by establishing interesting connections between this problem and other well studied problems/algorithms such as the Blackwell approachability problem, online convex optimization, and the Frank-Wolfe technique for convex optimization. We give examples of several concrete applications, where this more general model of bandits allows for richer and/or more efficient formulations of the problem.
We consider a contextual version of multi-armed bandit problem with global knapsack constraints. In each round, the outcome of pulling an arm is a scalar reward and a resource consumption vector, both dependent on the context, and the global knapsack constraints require the total consumption for each resource to be below some pre-fixed budget. The learning agent competes with an arbitrary set of context-dependent policies. This problem was introduced by Badanidiyuru et al. (2014), who gave a computationally inefficient algorithm with near-optimal regret bounds for it. We give a computationally efficient algorithm for this problem with slightly better regret bounds, by generalizing the approach of Agarwal et al. (2014) for the non-constrained version of the problem. The computational time of our algorithm scales logarithmically in the size of the policy space. This answers the main open question of Badanidiyuru et al. (2014). We also extend our results to a variant where there are no knapsack constraints but the objective is an arbitrary Lipschitz concave function of the sum of outcome vectors.