Do you want to publish a course? Click here

Search for continuous gravitational waves from ten H.E.S.S. sources using a hidden Markov model

127   0   0.0 ( 0 )
 Added by Deeksha Beniwal
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Isolated neutron stars are prime targets for continuous-wave (CW) searches by ground-based gravitational$-$wave interferometers. Results are presented from a CW search targeting ten pulsars. The search uses a semicoherent algorithm, which combines the maximum-likelihood $mathcal{F}$-statistic with a hidden Markov model (HMM) to efficiently detect and track quasi$-$monochromatic signals which wander randomly in frequency. The targets, which are associated with TeV sources detected by the High Energy Stereoscopic System (H.E.S.S.), are chosen to test for gravitational radiation from young, energetic pulsars with strong $mathrm{gamma}$-ray emission, and take maximum advantage of the frequency tracking capabilities of HMM compared to other CW search algorithms. The search uses data from the second observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO). It scans 1$-$Hz sub-bands around $f_*$, 4$f_*$/3, and 2$f_*$, where $f_*$ denotes the stars rotation frequency, in order to accommodate a physically plausible frequency mismatch between the electromagnetic and gravitational-wave emission. The 24 sub-bands searched in this study return 5,256 candidates above the Gaussian threshold with a false alarm probability of 1$%$ per sub-band per target. Only 12 candidates survive the three data quality vetoes which are applied to separate non$-$Gaussian artifacts from true astrophysical signals. CW searches using the data from subsequent observing runs will clarify the status of the remaining candidates.



rate research

Read More

63 - S. Suvorova , L. Sun , A. Melatos 2016
Gravitational wave searches for continuous-wave signals from neutron stars are especially challenging when the stars spin frequency is unknown a priori from electromagnetic observations and wanders stochastically under the action of internal (e.g. superfluid or magnetospheric) or external (e.g. accretion) torques. It is shown that frequency tracking by hidden Markov model (HMM) methods can be combined with existing maximum likelihood coherent matched filters like the F-statistic to surmount some of the challenges raised by spin wandering. Specifically it is found that, for an isolated, biaxial rotor whose spin frequency walks randomly, HMM tracking of the F-statistic output from coherent segments with duration T_drift = 10d over a total observation time of T_obs = 1yr can detect signals with wave strains h0 > 2e-26 at a noise level characteristic of the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). For a biaxial rotor with randomly walking spin in a binary orbit, whose orbital period and semi-major axis are known approximately from electromagnetic observations, HMM tracking of the Bessel-weighted F-statistic output can detect signals with h0 > 8e-26. An efficient, recursive, HMM solver based on the Viterbi algorithm is demonstrated, which requires ~10^3 CPU-hours for a typical, broadband (0.5-kHz) search for the low-mass X-ray binary Scorpius X-1, including generation of the relevant F-statistic input. In a realistic observational scenario, Viterbi tracking successfully detects 41 out of 50 synthetic signals without spin wandering in Stage I of the Scorpius X-1 Mock Data Challenge convened by the LIGO Scientific Collaboration down to a wave strain of h0 = 1.1e-25, recovering the frequency with a root-mean-square accuracy of <= 4.3e-3 Hz.
We present results of an all-sky search for continuous gravitational waves (CWs), which can be produced by fast-spinning neutron stars with an asymmetry around their rotation axis, using data from the second observing run of the Advanced LIGO detectors. We employ three different semi-coherent methods ($textit{FrequencyHough}$, $textit{SkyHough}$, and $textit{Time-Domain $mathcal{F}$-statistic}$) to search in a gravitational-wave frequency band from 20 to 1922 Hz and a first frequency derivative from $-1times10^{-8}$ to $2times10^{-9}$ Hz/s. None of these searches has found clear evidence for a CW signal, so we present upper limits on the gravitational-wave strain amplitude $h_0$ (the lowest upper limit on $h_0$ is $1.7times10^{-25}$ in the 123-124 Hz region) and discuss the astrophysical implications of this result. This is the most sensitive search ever performed over the broad range of parameters explored in this study.
We present the results of a search in LIGO O2 public data for continuous gravitational waves from the neutron star in the low-mass X-ray binary Scorpius X-1. We search for signals with $approx$ constant frequency in the range 40-180 Hz. Thanks to the efficiency of our search pipeline we can use a long coherence time and achieve unprecedented sensitivity, significantly improving on existing results. This is the first search that has been able to probe gravitational wave amplitudes that could balance the accretion torque at the neutron star radius. Our search excludes emission at this level between 67.5 Hz and 131.5 Hz, for an inclination angle $44^circ pm 6^circ$ derived from radio observations (Fomalont et al. 2001), and assuming that the spin axis is perpendicular to the orbital plane. If the torque arm is $approx $ 26 km -- a conservative estimate of the alfven radius -- our results are more constraining than the indirect limit across the band. This allows us to exclude certain mass-radius combinations and to place upper limits on the strength of the stars magnetic field. We also correct a mistake that appears in the literature in the equation that gives the gravitational wave amplitude at the torque balance (Abbott et al. 2017b, 2019a) and we re-interpret the associated latest LIGO/Virgo results in light of this.
64 - L. Sun , A. Melatos , S. Suvorova 2017
Searches for persistent gravitational radiation from nonpulsating neutron stars in young supernova remnants (SNRs) are computationally challenging because of rapid stellar braking. We describe a practical, efficient, semi-coherent search based on a hidden Markov model (HMM) tracking scheme, solved by the Viterbi algorithm, combined with a maximum likelihood matched filter, the $mathcal{F}$-statistic. The scheme is well suited to analyzing data from advanced detectors like the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). It can track rapid phase evolution from secular stellar braking and stochastic timing noise torques simultaneously without searching second- and higher-order derivatives of the signal frequency, providing an economical alternative to stack-slide-based semi-coherent algorithms. One implementation tracks the signal frequency alone. A second implementation tracks the signal frequency and its first time derivative. It improves the sensitivity by a factor of a few upon the first implementation, but the cost increases by two to three orders of magnitude.
58 - K. Wette , S. Walsh , R. Prix 2018
All-sky surveys for isolated continuous gravitational waves present a significant data-analysis challenge. Semicoherent search methods are commonly used to efficiently perform the computationally-intensive task of searching for these weak signals in the noisy data of gravitational-wave detectors such as LIGO and Virgo. We present a new implementation of a semicoherent search method, Weave, that for the first time makes full use of a parameter-space metric to generate banks of search templates at the correct resolution, combined with optimal lattices to minimize the required number of templates and hence the computational cost of the search. We describe the implementation of Weave and associated design choices, and characterize its behavior using semi-analytic models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا