Do you want to publish a course? Click here

Parallel Velocity Mixing Yielding Enhanced Electron Heating During Magnetic Pumping

76   0   0.0 ( 0 )
 Added by Jan Egedal
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic wave perturbations are observed in the solar wind and in the vicinity of Earths bow shock. For such environments, recent work on magnetic pumping with electrons trapped in the magnetic perturbations have demonstrated the possibility of efficient energization of superthermal electrons. Here we also analyze the energization of such energetic electrons for which the transit time through the system is short compared to time scales associated with the magnetic field evolution. In particular, considering an idealized magnetic configuration we show how trapping/detrapping of energetic magnetized electrons can cause effective parallel velocity diffusion. This parallel diffusion, combined with naturally occurring mechanisms known to cause pitch angle scattering, such as Whistler waves, produces enhanced heating rates for magnetic pumping. We find that at low pitch angle scattering rates the combined mechanism enhances the heating beyond the predictions of the recent theory for magnetic pumping with trapped electrons.



rate research

Read More

Local electron and ion heating characteristics during merging reconnection startup on the MAST spherical tokamak have been revealed for the first time using a 130 channel YAG-TS system and a new 32 chord ion Doppler tomography diagnostic. 2D local profile measurement of $T_e$, $n_e$ and $T_i$ detect highly localized electron heating at the X point and bulk ion heating downstream. For the push merging experiment under high guide field condition, thick layer of closed flux surface formed by reconnected field sustains the heating profile for more than electron and ion energy relaxation time $tau^E_{ei}sim4-10$ms, both heating profiles finally form triple peak structure at the X point and downstream. Toroidal guide field mostly contributes the formation of peaked electron heating profile at the X point. The localized heating increases with higher guide field, while bulk downstream ion heating is unaffected by the change in the guide field under MAST conditions ($B_t>3B_{rec}$).
We perform 2.5D hybrid simulations with massless fluid electrons and kinetic particle-in-cell ions to study the temporal evolution of ion temperatures, temperature anisotropies and velocity distribution functions in relation to the dissipation and turbulent evolution of a broad-band spectrum of parallel and obliquely propagating Alfven-cyclotron waves. The purpose of this paper is to study the relative role of parallel versus oblique Alfven-cyclotron waves in the observed heating and acceleration of minor ions in the fast solar wind. We consider collisionless homogeneous multi-species plasma, consisting of isothermal electrons, isotropic protons and a minor component of drifting $alpha$ particles in a finite-$beta$ fast stream near the Earth. The kinetic ions are modeled by initially isotropic Maxwellian velocity distribution functions, which develop non-thermal features and temperature anisotropies when a broad-band spectrum of low-frequency non-resonant, $omega leq 0.34 Omega_p$, Alfven-cyclotron waves is imposed at the beginning of the simulations. The initial plasma parameter values, such as ion density, temperatures and relative drift speeds, are supplied by fast solar wind observations made by the textit{Wind} spacecraft at 1AU. The imposed broad-band wave spectra is left-hand polarized and resembles textit{Wind} measurements of Alfvenic turbulence in the solar wind. The imposed magnetic field fluctuations for all cases are within the inertial range of the solar wind turbulence and have a Kraichnan-type spectral slope $alpha=-3/2$. We vary the propagation angle from $theta= 0^circ$ to $theta=30^circ$ and $theta=60^circ$, and find that the minor ion heating is most efficient for the highly-oblique waves propagating at $60^circ$, whereas the protons exhibit perpendicular cooling at all propagation angles.
A new regime of fast magnetic reconnection with an out-of-plane (guide) magnetic field is reported in which the key role is played by an electron pressure anisotropy described by the Chew-Goldberger-Low gyrotropic equations of state in the generalized Ohms law, which even dominates the Hall term. A description of the physical cause of this behavior is provided and two-dimensional fluid simulations are used to confirm the results. The electron pressure anisotropy causes the out-of-plane magnetic field to develop a quadrupole structure of opposite polarity to the Hall magnetic field and gives rise to dispersive waves. In addition to being important for understanding what causes reconnection to be fast, this mechanism should dominate in plasmas with low plasma beta and a high in-plane plasma beta with electron temperature comparable to or larger than ion temperature, so it could be relevant in the solar wind and some tokamaks.
We report in situ observations of an electron diffusion region (EDR) and adjacent separatrix region. We observe significant magnetic field oscillations near the lower hybrid frequency which propagate perpendicularly to the reconnection plane. We also find that the strong electron-scale gradients close to the EDR exhibit significant oscillations at a similar frequency. Such oscillations are not expected for a crossing of a steady 2D EDR, and can be explained by a complex motion of the reconnection plane induced by current sheet kinking propagating in the out-of-reconnection-plane direction. Thus all three spatial dimensions have to be taken into account to explain the observed perturbed EDR crossing.
Context: Recent satellite measurements in the turbulent magnetosheath of Earth have given evidence of an unusual reconnection mechanism that is driven exclusively by electrons. This newly observed process was called electron-only reconnection, and its inter-play with plasma turbulence is a matter of great debate. Aims: By using 2D-3V hybrid Vlasov-Maxwell simulations of freely decaying plasma turbulence, we study the role of electron-only reconnection in the development of plasma turbulence. In particular, we search for possible differences with respect to the turbulence associated with standard ion-coupled reconnection. Methods: We analyzed the structure functions of the turbulent magnetic field and ion fluid velocity fluctuations to characterize the structure and the intermittency properties of the turbulent energy cascade. Results: We find that the statistical properties of turbulent fluctuations associated with electron-only reconnection are consistent with those of turbulent fluctuations associated with standard ion-coupled reconnection, and no peculiar signature related to electron-only reconnection is found in the turbulence statistics. This result suggests that the turbulent energy cascade in a collisionless magnetized plasma does not depend on the specific mechanism associated with magnetic reconnection. The properties of the dissipation range are discussed as well, and we claim that only electrons contribute to the dissipation of magnetic field energy at sub-ion scales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا