Do you want to publish a course? Click here

A Multi-View Approach To Audio-Visual Speaker Verification

137   0   0.0 ( 0 )
 Added by Kritika Singh
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Although speaker verification has conventionally been an audio-only task, some practical applications provide both audio and visual streams of input. In these cases, the visual stream provides complementary information and can often be leveraged in conjunction with the acoustics of speech to improve verification performance. In this study, we explore audio-visual approaches to speaker verification, starting with standard fusion techniques to learn joint audio-visual (AV) embeddings, and then propose a novel approach to handle cross-modal verification at test time. Specifically, we investigate unimodal and concatenation based AV fusion and report the lowest AV equal error rate (EER) of 0.7% on the VoxCeleb1 dataset using our best system. As these methods lack the ability to do cross-modal verification, we introduce a multi-view model which uses a shared classifier to map audio and video into the same space. This new approach achieves 28% EER on VoxCeleb1 in the challenging testing condition of cross-modal verification.



rate research

Read More

We propose in this work a multi-view learning approach for audio and music classification. Considering four typical low-level representations (i.e. different views) commonly used for audio and music recognition tasks, the proposed multi-view network consists of four subnetworks, each handling one input types. The learned embedding in the subnetworks are then concatenated to form the multi-view embedding for classification similar to a simple concatenation network. However, apart from the joint classification branch, the network also maintains four classification branches on the single-view embedding of the subnetworks. A novel method is then proposed to keep track of the learning behavior on the classification branches and adapt their weights to proportionally blend their gradients for network training. The weights are adapted in such a way that learning on a branch that is generalizing well will be encouraged whereas learning on a branch that is overfitting will be slowed down. Experiments on three different audio and music classification tasks show that the proposed multi-view network not only outperforms the single-view baselines but also is superior to the multi-view baselines based on concatenation and late fusion.
Domain mismatch often occurs in real applications and causes serious performance reduction on speaker verification systems. The common wisdom is to collect cross-domain data and train a multi-domain PLDA model, with the hope to learn a domain-independent speaker subspace. In this paper, we firstly present an empirical study to show that simply adding cross-domain data does not help performance in conditions with enrollment-test mismatch. Careful analysis shows that this striking result is caused by the incoherent statistics between the enrollment and test conditions. Based on this analysis, we present a decoupled scoring approach that can maximally squeeze the value of cross-domain labels and obtain optimal verification scores when the enrollment and test are mismatched. When the statistics are coherent, the new formulation falls back to the conventional PLDA. Experimental results on cross-channel test show that the proposed approach is highly effective and is a principle solution to domain mismatch.
We propose a learnable mel-frequency cepstral coefficient (MFCC) frontend architecture for deep neural network (DNN) based automatic speaker verification. Our architecture retains the simplicity and interpretability of MFCC-based features while allowing the model to be adapted to data flexibly. In practice, we formulate data-driv
Although deep neural networks are successful for many tasks in the speech domain, the high computational and memory costs of deep neural networks make it difficult to directly deploy highperformance Neural Network systems on low-resource embedded devices. There are several mechanisms to reduce the size of the neural networks i.e. parameter pruning, parameter quantization, etc. This paper focuses on how to apply binary neural networks to the task of speaker verification. The proposed binarization of training parameters can largely maintain the performance while significantly reducing storage space requirements and computational costs. Experiment results show that, after binarizing the Convolutional Neural Network, the ResNet34-based network achieves an EER of around 5% on the Voxceleb1 testing dataset and even outperforms the traditional real number network on the text-dependent dataset: Xiaole while having a 32x memory saving.
We present a joint audio-visual model for isolating a single speech signal from a mixture of sounds such as other speakers and background noise. Solving this task using only audio as input is extremely challenging and does not provide an association of the separated speech signals with speakers in the video. In this paper, we present a deep network-based model that incorporates both visual and auditory signals to solve this task. The visual features are used to focus the audio on desired speakers in a scene and to improve the speech separation quality. To train our joint audio-visual model, we introduce AVSpeech, a new dataset comprised of thousands of hours of video segments from the Web. We demonstrate the applicability of our method to classic speech separation tasks, as well as real-world scenarios involving heated interviews, noisy bars, and screaming children, only requiring the user to specify the face of the person in the video whose speech they want to isolate. Our method shows clear advantage over state-of-the-art audio-only speech separation in cases of mixed speech. In addition, our model, which is speaker-independent (trained once, applicable to any speaker), produces better results than recent audio-visual speech separation methods that are speaker-dependent (require training a separate model for each speaker of interest).

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا