The differential cross section $dsigma/dq^2$ of diffractive electroproduction of heavy quarkonia on protons is a sensitive study tool for the interaction dynamics within the dipole representation. Knowledge of the transverse momentum transfer $vec q$ provides a unique opportunity to identify the reaction plane, due to a strong correlation between the directions of $vec q$ and impact parameter $vec b$. On top of that, the elastic dipole-proton amplitude is subject to a strong correlation between $vec b$ and dipole orientation $vec r$. Most of models for $b$-dependent dipole cross section either completely miss this information, or make unjustified assumptions. We perform calculations basing on a realistic model for $vec r$-$vec b$ correlation, which significantly affect the $q$-dependence of the cross section, in particular the ratio of $psi^{,prime}(2S)$ to $J/psi$ yields. We rely on realistic potential models for the heavy quarkonium wave function, and the Lorentz-boosted Schrodinger equation. Good agreement with data on $q$-dependent diffractive electroproduction of heavy quarkonia is achieved.