Predicting Sunspot Numbers for Solar Cycles 25 and 26


Abstract in English

The prediction of solar activity is important for advanced technologies and space activities. The peak sunspot number (SSN), which can represent the solar activity, has declined continuously in the past four solar cycles (21$-$24), and the Sun would experience a Dalton-like minimum, or even the Maunder-like minimum, if the declining trend continues in the following several cycles, so that the predictions of solar activity for cycles 25 and 26 are crucial. In Qin & Wu, 2018, ApJ, we established an SSN prediction model denoted as two-parameter modified logistic prediction (TMLP) model, which can predict the variation of SSNs in a solar cycle if the start time of the cycle has been determined. In this work, we obtain a new model denoted as TMLP-extension (TMLP-E). If the start time of a cycle $n$ is already known, TMLP-E can predict the variation of SSNs in the cycle $n+1$. Cycle 25 is believed to start in December 2019, so that the predictions of cycles 25 and 26 can be made with our models. It is found that the predicted solar maximum, ascent time, and cycle length are 115.1, 4.84 yr, and 11.06 yr, respectively, for cycle 25, and 107.3, 4.80 yr, and 10.97 yr, respectively, for cycle 26. The solar activities of cycles 25 and 26 are predicted to be at the same level as that of cycle 24, but will not decrease further. We therefore suggest that the cycles 24$-$26 are at a minimum of Gleissberg cycle.

Download