Do you want to publish a course? Click here

New low-mass members of Chamaeleon I and $epsilon$ Cha

214   0   0.0 ( 0 )
 Added by Karolina Kubiak
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The goal of this paper is to increase the membership list of the Chamaeleon star forming region and the $epsilon$ Cha moving group, in particular for low-mass stars and substellar objects. We extended the search region significantly beyond the dark clouds. Our sample has been selected based on proper motions and colours obtained from Gaia and 2MASS. We present and discuss the optical spectroscopic follow-up of 18 low-mass stellar objects in Cha I and $epsilon$ Cha. We characterize the properties of objects by deriving their physical parameters, both from spectroscopy and photometry. We add three more low-mass members to the list of Cha I, and increase the census of known $epsilon$ Cha members by more than 40%, confirming spectroscopically 13 new members and relying on X-ray emission as youth indicator for 2 more. In most cases the best-fitting spectral template is from objects in the TW Hya association, indicating that $epsilon$ Cha has a similar age. The first estimate of the slope of the initial mass function in $epsilon$ Cha down to the sub-stellar regime is consistent with that of other young clusters. We estimate our IMF to be complete down to $approx 0.03$M$_{odot}$. The IMF can be represented by two power laws: for M $<$ 0.5 M$_{odot}$ $alpha = 0.42 pm 0.11$ and for M $>$ 0.5 M$_{odot}$ $alpha = 1.44 pm 0.12$. We find similarities between $epsilon$ Cha and the southernmost part of Lower Centaurus Crux (LCC A0), both lying at similar distances and sharing the same proper motions. This suggests that $epsilon$ Cha and LCC A0 may have been born during the same star formation event



rate research

Read More

The Chamaeleon star-forming region has been extensively studied in the last decades. However, most studies have been confined to the densest parts of the clouds. In a previous paper, we analysed the kinematical properties of the spectroscopically confirmed population of the Chamaeleon I and II clouds. We now report on a search for new kinematical candidate members to the Chamaeleon I and II moving groups using available information from public databases and catalogues. Our candidates were initially selected in an area of 3 deg around each cloud on the basis of proper motions and colours from the UCAC4 Catalog. The SEDs of the objects were constructed using photometry retrieved from the Virtual Observatory and other resources, and fitted to models of stellar photospheres to derive effective temperatures, gravity values, and luminosities. Masses and ages were estimated by comparison with theoretical evolutionary tracks in a Hertzprung-Russell diagram. We have identified 51 and 14 candidate members to the Chamaeleon I and II moving groups, respectively, of which 17 and 1, respectively, are classified as probable young stars (ages < 20 Myr) according to our analysis. Another object in Chamaeleon I located slightly above the 1 Myr isochrone is classified as a possible young star. All these objects are diskless stars with masses in the range 0.3M-1.4MSun, and ages consistent with those reported for the corresponding confirmed members. They tend to be located at the boundaries of or outside the dark clouds, preferably to the north-east and south-east in the case of Chamaeleon I, and to the north-east in the case of Chamaeleon II. We conclude that the kinematical population of Chamaeleon I and II could be larger and spread over a larger area of the sky than suggested by previous studies.
188 - L.L. Kiss , A. Moor , T. Szalai 2010
We report on the discovery of new members of nearby young moving groups, exploiting the full power of combining the RAVE survey with several stellar age diagnostic methods and follow-up high-resolution optical spectroscopy. The results include the identification of one new and five likely members of the beta Pictoris moving group, ranging from spectral types F9 to M4 with the majority being M dwarfs, one K7 likely member of the epsilon Cha group and two stars in the Tuc-Hor association. Based on the positive identifications we foreshadow a great potential of the RAVE database in progressing toward a full census of young moving groups in the solar neighbourhood.
Context. Ruprecht 147 is the oldest (2.5 Gyr) open cluster in the solar vicinity (< 300 pc), making it an important target for stellar evolution studies and exoplanet searches. Aims. Derive a census of members and the luminosity, mass, and spatial distributions of the cluster. Methods. We use an astro-photometric data set including all available information from the literature together with our own observations. We process the data with an updated version of an existent membership selection methodology. Results. We identify 259 high-probability candidate members, including 58 previously unreported. All these candidates cover the luminosity interval between G > 6 mag to i< 21 mag. The cluster luminosity and mass distributions are derived with an unprecedented level of details allowing us to recognize, among other features, the Wielen dip. The mass distribution in the low-mass regime drops sharply at 0.4 $M_{odot}$ even though our data are sensitive to stellar masses down to 0.1 $M_{odot}$, suggesting that most very-low-mass members left the cluster as the result of its dynamical evolution. In addition, the cluster is highly elongated (ellipticity $sim$ 0.5) towards the galactic plane, and mass segregated. Conclusions. Our combined Gaia+DANCe data set allows us to obtain an extended list of cluster candidate members, and to derive luminosity, mass and projected spatial distributions in the oldest open cluster of the solar vicinity.
We intended to compile the most complete catalog of bona fide members and candidate members of the beta Pictoris association, and to measure their rotation periods and basic properties from our own observations, public archives, and exploring the literature. We carried out a multi-observatories campaign to get our own photometric time series and collected all archived public photometric data time series for the stars in our catalog. Each time series was analyzed with the Lomb-Scargle and CLEAN periodograms to search for the stellar rotation periods. We complemented the measured rotational properties with detailed information on multiplicity, membership, and projected rotational velocity available in the literature and discussed star by star. We measured the rotation periods of 112 out of 117 among bona fide members and candidate members of the beta Pictoris association and, whenever possible, we also measured the luminosity, radius, and inclination of the stellar rotation axis. This represents to date the largest catalog of rotation periods of any young loose stellar association. We provided an extensive catalog of rotation periods together with other relevant basic properties useful to explore a number of open issues, such as the causes of spread of rotation periods among coeval stars, evolution of angular momentum, and lithium-rotation connection.
Substellar Objects in Nearby Young Clusters -- SONYC -- is a survey program to investigate the frequency and properties of substellar objects in nearby star-forming regions. We present new spectroscopic follow-up of candidate members in Chamaeleon-I (~2 Myr, 160 pc) and Lupus 3 (~1 Myr, 200 pc), identified in our earlier works. We obtained 34 new spectra (1.5 - 2.4 mum, R~600), and identified two probable members in each of the two regions. These include a new probable brown dwarf in Lupus 3 (NIR spectral type M7.5 and Teff=2800 K), and an L3 (Teff=2200 K) brown dwarf in Cha-I, with the mass below the deuterium-burning limit. Spectroscopic follow-up of our photometric and proper motion candidates in Lupus 3 is almost complete (>90%), and we conclude that there are very few new substellar objects left to be found in this region, down to 0.01 - 0.02 MSun and Av leq 5. The low-mass portion of the mass function in the two clusters can be expressed in the power-law form dN/dM propto M^{-alpha}, with alpha~0.7, in agreement with surveys in other regions. In Lupus 3 we observe a possible flattening of the power-law IMF in the substellar regime: this region seems to produce fewer brown dwarfs relative to other clusters. The IMF in Cha-I shows a monotonic behavior across the deuterium-burning limit, consistent with the same power law extending down to 4 - 9 Jupiter masses. We estimate that objects below the deuterium-burning limit contribute of the order 5 - 15% to the total number of Cha-I members.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا