Do you want to publish a course? Click here

Driver2vec: Driver Identification from Automotive Data

59   0   0.0 ( 0 )
 Added by Jingbo Yang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

With increasing focus on privacy protection, alternative methods to identify vehicle operator without the use of biometric identifiers have gained traction for automotive data analysis. The wide variety of sensors installed on modern vehicles enable autonomous driving, reduce accidents and improve vehicle handling. On the other hand, the data these sensors collect reflect drivers habit. Drivers use of turn indicators, following distance, rate of acceleration, etc. can be transformed to an embedding that is representative of their behavior and identity. In this paper, we develop a deep learning architecture (Driver2vec) to map a short interval of driving data into an embedding space that represents the drivers behavior to assist in driver identification. We develop a custom model that leverages performance gains of temporal convolutional networks, embedding separation power of triplet loss and classification accuracy of gradient boosting decision trees. Trained on a dataset of 51 drivers provided by Nervtech, Driver2vec is able to accurately identify the driver from a short 10-second interval of sensor data, achieving an average pairwise driver identification accuracy of 83.1% from this 10-second interval, which is remarkably higher than performance obtained in previous studies. We then analyzed performance of Driver2vec to show that its performance is consistent across scenarios and that modeling choices are sound.



rate research

Read More

Robust sensing and perception in adverse weather conditions remains one of the biggest challenges for realizing reliable autonomous vehicle mobility services. Prior work has established that rainfall rate is a useful measure for adversity of atmospheric weather conditions. This work presents a probabilistic hierarchical Bayesian model that infers rainfall rate from automotive lidar point cloud sequences with high accuracy and reliability. The model is a hierarchical mixture of expert model, or a probabilistic decision tree, with gating and expert nodes consisting of variational logistic and linear regression models. Experimental data used to train and evaluate the model is collected in a large-scale rainfall experiment facility from both stationary and moving vehicle platforms. The results show prediction accuracy comparable to the measurement resolution of a disdrometer, and the soundness and usefulness of the uncertainty estimation. The model achieves RMSE 2.42 mm/h after filtering out uncertain predictions. The error is comparable to the mean rainfall rate change of 3.5 mm/h between measurements. Model parameter studies show how predictive performance changes with tree depth, sampling duration, and crop box dimension. A second experiment demonstrate the predictability of higher rainfall above 300 mm/h using a different lidar sensor, demonstrating sensor independence.
Despite the success of deep neural networks (DNNs) in image classification tasks, the human-level performance relies on massive training data with high-quality manual annotations, which are expensive and time-consuming to collect. There exist many inexpensive data sources on the web, but they tend to contain inaccurate labels. Training on noisy labeled datasets causes performance degradation because DNNs can easily overfit to the label noise. To overcome this problem, we propose a noise-tolerant training algorithm, where a meta-learning update is performed prior to conventional gradient update. The proposed meta-learning method simulates actual training by generating synthetic noisy labels, and train the model such that after one gradient update using each set of synthetic noisy labels, the model does not overfit to the specific noise. We conduct extensive experiments on the noisy CIFAR-10 dataset and the Clothing1M dataset. The results demonstrate the advantageous performance of the proposed method compared to several state-of-the-art baselines.
Driver vigilance estimation is an important task for transportation safety. Wearable and portable brain-computer interface devices provide a powerful means for real-time monitoring of the vigilance level of drivers to help with avoiding distracted or impaired driving. In this paper, we propose a novel multimodal architecture for in-vehicle vigilance estimation from Electroencephalogram and Electrooculogram. To enable the system to focus on the most salient parts of the learned multimodal representations, we propose an architecture composed of a capsule attention mechanism following a deep Long Short-Term Memory (LSTM) network. Our model learns hierarchical dependencies in the data through the LSTM and capsule feature representation layers. To better explore the discriminative ability of the learned representations, we study the effect of the proposed capsule attention mechanism including the number of dynamic routing iterations as well as other parameters. Experiments show the robustness of our method by outperforming other solutions and baseline techniques, setting a new state-of-the-art. We then provide an analysis on different frequency bands and brain regions to evaluate their suitability for driver vigilance estimation. Lastly, an analysis on the role of capsule attention, multimodality, and robustness to noise is performed, highlighting the advantages of our approach.
Today, one of the major challenges that autonomous vehicles are facing is the ability to drive in urban environments. Such a task requires communication between autonomous vehicles and other road users in order to resolve various traffic ambiguities. The interaction between road users is a form of negotiation in which the parties involved have to share their attention regarding a common objective or a goal (e.g. crossing an intersection), and coordinate their actions in order to accomplish it. In this literature review we aim to address the interaction problem between pedestrians and drivers (or vehicles) from joint attention point of view. More specifically, we will discuss the theoretical background behind joint attention, its application to traffic interaction and practical approaches to implementing joint attention for autonomous vehicles.
In this work, we propose the use of radar with advanced deep segmentation models to identify open space in parking scenarios. A publically available dataset of radar observations called SCORP was collected. Deep models are evaluated with various radar input representations. Our proposed approach achieves low memory usage and real-time processing speeds, and is thus very well suited for embedded deployment.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا