No Arabic abstract
The development of fast and accurate screening tools, which could facilitate testing and prevent more costly clinical tests, is key to the current pandemic of COVID-19. In this context, some initial work shows promise in detecting diagnostic signals of COVID-19 from audio sounds. In this paper, we propose a voice-based framework to automatically detect individuals who have tested positive for COVID-19. We evaluate the performance of the proposed framework on a subset of data crowdsourced from our app, containing 828 samples from 343 participants. By combining voice signals and reported symptoms, an AUC of $0.79$ has been attained, with a sensitivity of $0.68$ and a specificity of $0.82$. We hope that this study opens the door to rapid, low-cost, and convenient pre-screening tools to automatically detect the disease.
Audio signals generated by the human body (e.g., sighs, breathing, heart, digestion, vibration sounds) have routinely been used by clinicians as indicators to diagnose disease or assess disease progression. Until recently, such signals were usually collected through manual auscultation at scheduled visits. Research has now started to use digital technology to gather bodily sounds (e.g., from digital stethoscopes) for cardiovascular or respiratory examination, which could then be used for automatic analysis. Some initial work shows promise in detecting diagnostic signals of COVID-19 from voice and coughs. In this paper we describe our data analysis over a large-scale crowdsourced dataset of respiratory sounds collected to aid diagnosis of COVID-19. We use coughs and breathing to understand how discernible COVID-19 sounds are from those in asthma or healthy controls. Our results show that even a simple binary machine learning classifier is able to classify correctly healthy and COVID-19 sounds. We also show how we distinguish a user who tested positive for COVID-19 and has a cough from a healthy user with a cough, and users who tested positive for COVID-19 and have a cough from users with asthma and a cough. Our models achieve an AUC of above 80% across all tasks. These results are preliminary and only scratch the surface of the potential of this type of data and audio-based machine learning. This work opens the door to further investigation of how automatically analysed respiratory patterns could be used as pre-screening signals to aid COVID-19 diagnosis.
The COVID-19 pandemic has led to the saturation of public health services worldwide. In this scenario, the early diagnosis of SARS-Cov-2 infections can help to stop or slow the spread of the virus and to manage the demand upon health services. This is especially important when resources are also being stretched by heightened demand linked to other seasonal diseases, such as the flu. In this context, the organisers of the DiCOVA 2021 challenge have collected a database with the aim of diagnosing COVID-19 through the use of coughing audio samples. This work presents the details of the automatic system for COVID-19 detection from cough recordings presented by team PANACEA. This team consists of researchers from two European academic institutions and one company: EURECOM (France), University of Granada (Spain), and Biometric Vox S.L. (Spain). We developed several systems based on established signal processing and machine learning methods. Our best system employs a Teager energy operator cepstral coefficients (TECCs) based frontend and Light gradient boosting machine (LightGBM) backend. The AUC obtained by this system on the test set is 76.31% which corresponds to a 10% improvement over the official baseline.
In this paper, we focus on improving the performance of the text-dependent speaker verification system in the scenario of limited training data. The speaker verification system deep learning based text-dependent generally needs a large scale text-dependent training data set which could be labor and cost expensive, especially for customized new wake-up words. In recent studies, voice conversion systems that can generate high quality synthesized speech of seen and unseen speakers have been proposed. Inspired by those works, we adopt two different voice conversion methods as well as the very simple re-sampling approach to generate new text-dependent speech samples for data augmentation purposes. Experimental results show that the proposed method significantly improves the Equal Error Rare performance from 6.51% to 4.51% in the scenario of limited training data.
COVID-19 is a global health crisis that has been affecting many aspects of our daily lives throughout the past year. The symptomatology of COVID-19 is heterogeneous with a severity continuum. A considerable proportion of symptoms are related to pathological changes in the vocal system, leading to the assumption that COVID-19 may also affect voice production. For the very first time, the present study aims to investigate voice acoustic correlates of an infection with COVID-19 on the basis of a comprehensive acoustic parameter set. We compare 88 acoustic features extracted from recordings of the vowels /i:/, /e:/, /o:/, /u:/, and /a:/ produced by 11 symptomatic COVID-19 positive and 11 COVID-19 negative German-speaking participants. We employ the Mann-Whitney U test and calculate effect sizes to identify features with the most prominent group differences. The mean voiced segment length and the number of voiced segments per second yield the most important differences across all vowels indicating discontinuities in the pulmonic airstream during phonation in COVID-19 positive participants. Group differences in the front vowels /i:/ and /e:/ are additionally reflected in the variation of the fundamental frequency and the harmonics-to-noise ratio, group differences in back vowels /o:/ and /u:/ in statistics of the Mel-frequency cepstral coefficients and the spectral slope. Findings of this study can be considered an important proof-of-concept contribution for a potential future voice-based identification of individuals infected with COVID-19.
Recently, sound-based COVID-19 detection studies have shown great promise to achieve scalable and prompt digital pre-screening. However, there are still two unsolved issues hindering the practice. First, collected datasets for model training are often imbalanced, with a considerably smaller proportion of users tested positive, making it harder to learn representative and robust features. Second, deep learning models are generally overconfident in their predictions. Clinically, false predictions aggravate healthcare costs. Estimation of the uncertainty of screening would aid this. To handle these issues, we propose an ensemble framework where multiple deep learning models for sound-based COVID-19 detection are developed from different but balanced subsets from original data. As such, data are utilized more effectively compared to traditional up-sampling and down-sampling approaches: an AUC of 0.74 with a sensitivity of 0.68 and a specificity of 0.69 is achieved. Simultaneously, we estimate uncertainty from the disagreement across multiple models. It is shown that false predictions often yield higher uncertainty, enabling us to suggest the users with certainty higher than a threshold to repeat the audio test on their phones or to take clinical tests if digital diagnosis still fails. This study paves the way for a more robust sound-based COVID-19 automated screening system.