No Arabic abstract
At the fundamental level, quantum communication is ultimately limited by noise. For instance, quantum signals cannot be amplified without the introduction of noise in the amplified states. Furthermore, photon loss reduces the signal-to-noise ratio, accentuating the effect of noise. Thus, most of the efforts in quantum communications have been directed towards overcoming noise to achieve longer communication distances, larger secret key rates, or to operate in noisier environmental conditions. Here, we propose and experimentally demonstrate a platform for quantum communication based on ultrafast optical techniques. In particular, our scheme enables the experimental realization of high-rates and quantum signal filtering approaching a single spectro-temporal mode, resulting in a dramatic reduction in channel noise. By experimentally realizing a 1-ps optically induced temporal gate, we show that ultrafast time filtering can result in an improvement in noise tolerance by a factor of up to 1200 compared to a 2-ns electronic filter enabling daytime quantum key distribution or quantum communication in bright fibers.
Accurate time-delay measurement is at the core of many modern technologies. Here, we present a temporal-mode demultiplexing scheme that achieves the ultimate quantum precision for the simultaneous estimation of the temporal centroid, the time offset, and the relative intensities of an incoherent mixture of ultrashort pulses at the single-photon level. We experimentally resolve temporal separations ten times smaller than the pulse duration, as well as imbalanced intensities differing by a factor of $10^{2}$. This represents an improvement of more than an order of magnitude over the best standard methods based on intensity detection.
The ultimate precision limit in estimating the Larmor frequency of $N$ unentangled rotating spins is well established, and is highly important for magnetometers, gyroscopes and many other sensors. However this limit assumes perfect, single addressing, measurements of the spins. This requirement is not practical in NMR spectroscopy, as well as other physical systems, where a weakly interacting external probe is used as a measurement device. Here we show that in the framework of quantum nano-NMR spectroscopy, in which these limitations are inherent, the ultimate precision limit is still achievable using control and a finely tuned measurement.
The information capacity of an optical channel under power constraints is ultimately limited by the quantum nature of transmitted signals. We discuss currently available and emerging photonic technologies whose combination can be shown theoretically to enable nearly quantum-limited operation of a noisy optical communication link in the photon-starved regime, with the information rate scaling linearly in the detected signal power. The key ingredients are quantum pulse gating to facilitate mode selectivity, photon-number-resolved direct detection, and a photon-efficient high-order modulation format such as pulse position modulation, frequency shift keying, or binary phase shift keyed Hadamard words decoded optically using structured receivers.
We demonstrate superadditivity in the communication capacity of a binary alphabet consisting of two nonorthogonal quantum states. For this scheme, collective decoding is performed two transmissions at a time. This improves upon the previous schemes of Sasaki et al. [Phys. Rev. A 58, 146 (1998)] where superadditivity was not achieved until a decoding of three or more transmissions at a time. This places superadditivity within the regime of a near-term laboratory demonstration. We propose an experimental test based upon an alphabet of low photon-number coherent states where the signal decoding is done with atomic state measurements on a single atom in a high-finesse optical cavity.
Optical channels, such as fibers or free-space links, are ubiquitous in todays telecommunication networks. They rely on the electromagnetic field associated with photons to carry information from one point to another in space. As a result, a complete physical model of these channels must necessarily take quantum effects into account in order to determine their ultimate performances. Specifically, Gaussian photonic (or bosonic) quantum channels have been extensively studied over the past decades given their importance for practical purposes. In spite of this, a longstanding conjecture on the optimality of Gaussian encodings has yet prevented finding their communication capacity. Here, this conjecture is solved by proving that the vacuum state achieves the minimum output entropy of a generic Gaussian bosonic channel. This establishes the ultimate achievable bit rate under an energy constraint, as well as the long awaited proof that the single-letter classical capacity of these channels is additive. Beyond capacities, it also has broad consequences in quantum information sciences.