Do you want to publish a course? Click here

Domain Invariant Representation Learning with Domain Density Transformations

165   0   0.0 ( 0 )
 Added by Atilim Gunes Baydin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Domain generalization refers to the problem where we aim to train a model on data from a set of source domains so that the model can generalize to unseen target domains. Naively training a model on the aggregate set of data (pooled from all source domains) has been shown to perform suboptimally, since the information learned by that model might be domain-specific and generalize imperfectly to target domains. To tackle this problem, a predominant approach is to find and learn some domain-invariant information in order to use it for the prediction task. In this paper, we propose a theoretically grounded method to learn a domain-invariant representation by enforcing the representation network to be invariant under all transformation functions among domains. We also show how to use generative adversarial networks to learn such domain transformations to implement our method in practice. We demonstrate the effectiveness of our method on several widely used datasets for the domain generalization problem, on all of which we achieve competitive results with state-of-the-art models.

rate research

Read More

The phenomenon of adversarial examples illustrates one of the most basic vulnerabilities of deep neural networks. Among the variety of techniques introduced to surmount this inherent weakness, adversarial training has emerged as the most common and efficient strategy to achieve robustness. Typically, this is achieved by balancing robust and natural objectives. In this work, we aim to achieve better trade-off between robust and natural performances by enforcing a domain-invariant feature representation. We present a new adversarial training method, Domain Invariant Adversarial Learning (DIAL), which learns a feature representation which is both robust and domain invariant. DIAL uses a variant of Domain Adversarial Neural Network (DANN) on the natural domain and its corresponding adversarial domain. In a case where the source domain consists of natural examples and the target domain is the adversarially perturbed examples, our method learns a feature representation constrained not to discriminate between the natural and adversarial examples, and can therefore achieve a more robust representation. Our experiments indicate that our method improves both robustness and natural accuracy, when compared to current state-of-the-art adversarial training methods.
Animals are able to imitate each others behavior, despite their difference in biomechanics. In contrast, imitating the other similar robots is a much more challenging task in robotics. This problem is called cross domain imitation learning~(CDIL). In this paper, we consider CDIL on a class of similar robots. We tackle this problem by introducing an imitation learning algorithm based on invariant representation. We propose to learn invariant state and action representations, which aligns the behavior of multiple robots so that CDIL becomes possible. Compared with previous invariant representation learning methods for similar purpose, our method does not require human-labeled pairwise data for training. Instead, we use cycle-consistency and domain confusion to align the representation and increase its robustness. We test the algorithm on multiple robots in simulator and show that unseen new robot instances can be trained with existing expert demonstrations successfully. Qualitative results also demonstrate that the proposed method is able to learn similar representations for different robots with similar behaviors, which is essential for successful CDIL.
We investigate the power of censoring techniques, first developed for learning {em fair representations}, to address domain generalization. We examine {em adversarial} censoring techniques for learning invariant representations from multiple studies (or domains), where each study is drawn according to a distribution on domains. The mapping is used at test time to classify instances from a new domain. In many contexts, such as medical forecasting, domain generalization from studies in populous areas (where data are plentiful), to geographically remote populations (for which no training data exist) provides fairness of a different flavor, not anticipated in previous work on algorithmic fairness. We study an adversarial loss function for $k$ domains and precisely characterize its limiting behavior as $k$ grows, formalizing and proving the intuition, backed by experiments, that observing data from a larger number of domains helps. The limiting results are accompanied by non-asymptotic learning-theoretic bounds. Furthermore, we obtain sufficient conditions for good worst-case prediction performance of our algorithm on previously unseen domains. Finally, we decompose our mappings into two components and provide a complete characterization of invariance in terms of this decomposition. To our knowledge, our results provide the first formal guarantees of these kinds for adversarial invariant domain generalization.
Learning domain-invariant representation is a dominant approach for domain generalization (DG), where we need to build a classifier that is robust toward domain shifts. However, previous domain-invariance-based methods overlooked the underlying dependency of classes on domains, which is responsible for the trade-off between classification accuracy and domain invariance. Because the primary purpose of DG is to classify unseen domains rather than the invariance itself, the improvement of the invariance can negatively affect DG performance under this trade-off. To overcome the problem, this study first expands the analysis of the trade-off by Xie et. al., and provides the notion of accuracy-constrained domain invariance, which means the maximum domain invariance within a range that does not interfere with accuracy. We then propose a novel method adversarial feature learning with accuracy constraint (AFLAC), which explicitly leads to that invariance on adversarial training. Empirical validations show that the performance of AFLAC is superior to that of domain-invariance-based methods on both synthetic and three real-world datasets, supporting the importance of considering the dependency and the efficacy of the proposed method.
Intelligent behaviour in the real-world requires the ability to acquire new knowledge from an ongoing sequence of experiences while preserving and reusing past knowledge. We propose a novel algorithm for unsupervised representation learning from piece-wise stationary visual data: Variational Autoencoder with Shared Embeddings (VASE). Based on the Minimum Description Length principle, VASE automatically detects shifts in the data distribution and allocates spare representational capacity to new knowledge, while simultaneously protecting previously learnt representations from catastrophic forgetting. Our approach encourages the learnt representations to be disentangled, which imparts a number of desirable properties: VASE can deal sensibly with ambiguous inputs, it can enhance its own representations through imagination-based exploration, and most importantly, it exhibits semantically meaningful sharing of latents between different datasets. Compared to baselines with entangled representations, our approach is able to reason beyond surface-level statistics and perform semantically meaningful cross-domain inference.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا