No Arabic abstract
Ram Pressure Stripping can remove gas from satellite galaxies in clusters via a direct interaction between the intracluster medium (ICM) and the interstellar medium. This interaction is generally thought of as a contact force per area, however we point out that these gases must interact in a hydrodynamic fashion, and argue that this will lead to mixing of the galactic gas with the ICM wind. We develop an analytic framework for how mixing is related to the acceleration of stripped gas from a satellite galaxy. We then test this model using three wind-tunnel simulations of Milky Way-like galaxies interacting with a moving ICM, and find excellent agreement with predictions using the analytic framework. Focusing on the dense clumps in the stripped tails, we find that they are nearly uniformly mixed with the ICM, indicating that all gas in the tail mixes with the surroundings, and dense clumps are not separate entities to be modeled differently than diffuse gas. We find that while mixing drives acceleration of stripped gas, the density and velocity of the surrounding wind will determine whether the mixing results in the heating of stripped gas into the ICM, or the cooling of the ICM into dense clouds.
Previous studies have revealed a population of galaxies in galaxy clusters with ram pressure stripped (RPS) tails of gas and embedded young stars. We observed 1.4 GHz continuum and HI emission with the Very Large Array in its B-configuration in two fields of the Coma cluster to study the radio properties of RPS galaxies. The best continuum sensitivities in the two fields are 6 and 8 $mu$Jy per 4 beam respectively, which are 4 and 3 times deeper than those previously published. Radio continuum tails are found in 10 (8 are new) out of 20 RPS galaxies, unambiguously revealing the presence of relativistic electrons and magnetic fields in the stripped tails. Our results also hint that the tail has a steeper spectrum than the galaxy. The 1.4 GHz continuum in the tails is enhanced relative to their H$alpha$ emission by a factor of $sim$7 compared to the main bodies of the RPS galaxies. The 1.4 GHz continuum of the RPS galaxies is also enhanced relative to their IR emission by a factor of $sim$2 compared to star-forming galaxies. The enhancement is likely related to ram pressure and turbulence in the tail. We furthermore present HI detections in three RPS galaxies and upper limits for the other RPS galaxies. The cold gas in D100s stripped tail is dominated by molecular gas, which is likely a consequence of the high ambient pressure. No evidence of radio emission associated with ultra-diffuse galaxies is found in our data.
We have analyzed the Magellanic Stream (MS) using the deepest and the most resolved H I survey of the Southern Hemisphere (the Galactic All-Sky Survey). The overall Stream is structured into two filaments, suggesting two ram-pressure tails lagging behind the Magellanic Clouds (MCs), and resembling two close, transonic, von Karman vortex streets. The past motions of the Clouds appear imprinted in them, implying almost parallel initial orbits, and then a radical change after their passage near the N(H I) peak of the MS. This is consistent with a recent collision between the MCs, $200-300$ Myr ago, which has stripped their gas further into small clouds, spreading them out along a gigantic bow shock, perpendicular to the MS. The Stream is formed by the interplay between stellar feedback and the ram pressure exerted by hot gas in the Milky Way (MW) halo with $rho_{hot}$= $10^{-4}$ $cm^{-3}$ at 50-70 kpc, a value necessary to explain the MS multiphase high-velocity clouds. The corresponding hydrodynamic modeling provides the currently most accurate reproduction of the whole H I Stream morphology, of its velocity, and column density profiles along $L_{MS}$. The ram pressure plus collision scenario requires tidal dwarf galaxies, which are assumed to be the Cloud and dSph progenitors, to have left imprints in the MS and the Leading Arm, respectively. The simulated LMC and SMC have baryonic mass, kinematics and proper motions consistent with observations. This supports a novel paradigm for the MS System, which could have its origin in material expelled toward the MW by the ancient gas-rich merger that formed M31.
The diffuse ionized gas (DIG) is an important component of the interstellar medium and it can be affected by many physical processes in galaxies. Measuring its distribution and contribution in emission allows us to properly study both its ionization and star formation in galaxies. Here, we measure for the first time the DIG emission in 38 gas-stripped galaxies in local clusters drawn from the GAs Stripping Phenomena in galaxies with MUSE survey (GASP). These galaxies are at different stages of stripping. We also compare the DIG properties to those of 33 normal galaxies from the same survey. To estimate the DIG fraction (C$_{DIG}$) and derive its maps, we combine attenuation corrected H$alpha$ surface brightness with $rm [SII]/Halpha$ line ratio. Our results indicate that we cannot use neither a single H$alpha$ or $rm [SII]/Halpha$ value, nor a threshold in equivalent width of H$alpha$ emission line to separate spaxels dominated by DIG and non-DIG emission. Assuming a constant surface brightness of the DIG across galaxies underestimates C$_{DIG}$. Contrasting stripped and non-stripped galaxies, we find no clear differences in C$_{DIG}$. The DIG emission contributes between 20% and 90% of the total integrated flux, and does not correlate with the galactic stellar mass and star-formation rate (SFR). The C$_{DIG}$ anti-correlates with the specific SFR, which may indicate an older ($>10^8$ yr) stellar population as ionizing source of the DIG. The DIG fraction shows anti-correlations with the SFR surface density, which could be used for a robust estimation of integrated C$_{DIG}$ in galaxies.
We discuss the effect of ram pressure on the cold clouds in the centers of cool-core galaxy clusters, and in particular, how it reduces cloud velocity and sometimes causes an offset between the cold gas and young stars. The velocities of the molecular gas in both observations and our simulations fall in the range of $100-400$ km/s, much lower than expected if they fall from a few tens of kpc ballistically. If the intra-cluster medium (ICM) is at rest, the ram pressure of the ICM only slightly reduces the velocity of the clouds. When we assume that the clouds are actually fluffier because they are co-moving with a warm-hot layer, the velocity becomes smaller. If we also consider the AGN wind in the cluster center by adding a wind profile measured from the simulation, the clouds are further slowed down at small radii, and the resulting velocities are in general agreement with the observations and simulations. Because ram pressure only affects gas but not stars, it can cause a separation between a filament and young stars that formed in the filament as they move through the ICM together. This separation has been observed in Perseus and also exists in our simulations. We show that the star-filament offset combined with line-of-sight velocity measurements can help determine the true motion of the cold gas, and thus distinguish between inflows and outflows.
We present new HST F275W, F475W, and F814W imaging of the region of the Coma cluster around D100, a spiral galaxy with a remarkably long and narrow ($60 times 1.5$ kpc) ram pressure stripped gas tail. We find blue sources coincident with the H$alpha$ tail, which we identify as young stars formed in the tail. We also determine they are likely to be unbound stellar complexes with sizes of $sim$ $50-100$ pc, likely to disperse as they age. From a comparison of the colors and magnitudes of the young stellar complexes with simple stellar population models, we find ages ranging from $sim$ $1-50$ Myr, and masses ranging from $10^3$ to $sim$ $10^5$ M$_{odot}$. We find the overall rate and efficiency of star formation are low, $sim$ $6.0 times , 10^{-3}$ $M_{odot}$ yr$^{-1}$ and $sim$ $6 , times$ 10$^{-12}$ yr$^{-1}$ respectively. The total H$alpha$ flux of the tail would correspond to a star formation rate $7$ times higher, indicating some other mechanism for H$alpha$ excitation is dominant. From analysis of colors, we track the progression of outside-in star formation quenching in the main body of D100, as well as its apparent companion the S0 D99. Finally, we observe the dust extinction in the base of the tail has an outer envelope with remarkably smooth and straight edges, and linear filamentary substructure strongly suggestive of magnetic fields. These features and the small amount of tail broadening strongly suggest gas cooling restricting broadening, and the influence of magnetic fields inhibiting turbulence.