Do you want to publish a course? Click here

Parameters of the type-IIP supernova SN 2012aw

81   0   0.0 ( 0 )
 Added by Petr Baklanov
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results the photometric observations of the Type IIP supernova SN 2012aw obtained for the time interval from 7 till 371 days after the explosion. Using the previously published values of the photospheric velocities weve computed the hydrodynamic model which simultaneously reproduced the photometry observations and velocity measurements. The model was calculated with the multi-energy group radiation hydrodynamics code STELLA. We found the parameters of the pre-supernova: radius $R = 500 R_odot$, nickel mass $M(^{56}$Ni$)$ $sim 0.06 M_odot$, pre-supernova mass $25 M_odot$, mass of ejected envelope $23.6 M_odot$, explosion energy $E sim 2 times 10^{51}$ erg. The model progenitor mass $M=25 M_odot$ significantly exceeds the upper limit mass $M=17 M_odot$, obtained from analysis the pre-SNe observations. This result confirms once more that the Red Supergiant Problem must be resolved by stellar evolution and supernova explosion theories in interaction with observations.



rate research

Read More

We present densely-sampled ultraviolet/optical photometric and low-resolution optical spectroscopic observations of the type IIP supernova 2013ab in the nearby ($sim$24 Mpc) galaxy NGC 5669, from 2 to 190d after explosion. Continuous photometric observations, with the cadence of typically a day to one week, were acquired with the 1-2m class telescopes in the LCOGT network, ARIES telescopes in India and various other telescopes around the globe. The light curve and spectra suggest that the SN is a normal type IIP event with a plateau duration of $ sim80 $ days with mid plateau absolute visual magnitude of -16.7, although with a steeper decline during the plateau (0.92 mag 100 d$ ^{-1} $ in $ V $ band) relative to other archetypal SNe of similar brightness. The velocity profile of SN 2013ab shows striking resemblance with those of SNe 1999em and 2012aw. Following the Rabinak & Waxman (2011) prescription, the initial temperature evolution of the SN emission allows us to estimate the progenitor radius to be $ sim $ 800 R$_{odot}$, indicating that the SN originated from a red supergiant star. The distance to the SN host galaxy is estimated to be 24.3 Mpc from expanding photosphere method (EPM). From our observations, we estimate that 0.064 M$_{odot}$ of $^{56}$Ni was synthesized in the explosion. General relativistic, radiation hydrodynamical modeling of the SN infers an explosion energy of $ 0.35times10^{51} $ erg, a progenitor mass (at the time of explosion) of $ sim9 $ M$_{odot}$ and an initial radius of $ sim600 $ R$_{odot}$.
We present optical photometry and spectroscopy from about a week after explosion to $sim$272 d of an atypical Type IIP supernova, SN 2015ba, which exploded in the edge-on galaxy IC 1029. SN 2015ba is a luminous event with an absolute V-band magnitude of -17.1$pm$0.2 mag at 50 d since explosion and has a long plateau lasting for $sim$123 d. The distance to the SN is estimated to be 34.8$pm$0.7 Mpc using the expanding photosphere and standard candle methods. High-velocity H-Balmer components constant with time are observed in the late-plateau phase spectra of SN 2015ba, which suggests a possible role of circumstellar interaction at these phases. Both hydrodynamical and analytical modelling suggest a massive progenitor of SN 2015ba with a pre-explosion mass of 24-26 M$_odot$. However, the nebular spectra of SN 2015ba exhibit insignificant levels of oxygen, which is otherwise expected from a massive progenitor. This might be suggestive of the non-monotonical link between O-core masses and the zero-age main-sequence mass of pre-supernova stars and/or uncertainties in the mixing scenario in the ejecta of supernovae.
106 - V.P. Utrobin MPA 2014
The explosion energy and the ejecta mass of a type IIP supernova (SN IIP) derived from hydrodynamic simulations are principal parameters of the explosion theory. However, the number of SNe IIP studied by hydrodynamic modeling is small. Moreover, some doubts exist in regard to the reliability of derived SN IIP parameters. The well-observed type IIP SN 2012A will be studied via hydrodynamic modeling. Their early spectra will be checked for a presence of the ejecta clumpiness. Other observational effects of clumpiness will be explored. Supernova parameters are determined by means of the standard hydrodynamic modeling. The early hydrogen Halpha and Hbeta lines are used for the clumpiness diagnostics. The modified hydrodynamic code is employed to study the clumpiness effect in the light curve and expansion kinematics. We found that SN 20012A is the result of the explosion of a red supergiant with the radius of 715 Rsun. The explosion energy is 5.25x10^50 erg, the ejecta mass is 13.1 Msun, and the total Ni-56 mass is 0.012 Msun. The estimated mass of a progenitor, a main-sequence star, is 15 Msun. The Halpha and Hbeta lines in early spectra indicate that outer ejecta are clumpy. Hydrodynamic simulations show that the clumpiness modifies the early light curve and increases the maximum velocity of the outer layers. The pre-SN 2012A was a normal red supergiant with the progenitor mass of about 15 Msun. The outer layers of ejecta indicate the clumpy structure. The clumpiness of the external layers can increase the maximum expansion velocity.
278 - V. P. Utrobin ITEP 2019
The enigmatic type IIP SN 2016X demonstrates the unprecedented asphericity in the nebular H-alpha line profile, the absence of nebular [O I] emission, and the unusual occultation effect due to the internal dust. The hydrodynamic modelling of the bolometric light curve and expansion velocities suggests that the event is an outcome of the massive star explosion that ejected 28 Msun with the kinetic energy of 1.7x10^51 erg and 0.03 Msun of radioactive Ni-56. We recover the bipolar distribution of Ni-56 from the H-alpha profile via the simulation of the emissivity produced by non-spherical Ni-56 ejecta. The conspicuous effect of the dust absorption in the H-alpha profile rules out the occultation by the dusty sphere or dusty thick disk but turns out consistent with the thin dusty disk-like structure in the plane perpendicular to the bipolar axis. We speculate that the absence of the nebular [O I] emission might originate from the significant cooling of the oxygen-rich matter mediated by CO and SiO molecules.
100 - T. Nagao , A. Cikota , F. Patat 2019
Type IIP supernovae (SNe IIP), which represent the most common class of core-collapse (CC) SNe, show a rapid increase in continuum polarization just after entering the tail phase. This feature can be explained by a highly asymmetric helium core, which is exposed when the hydrogen envelope becomes transparent. Here we report the case of a SN IIP (SN~2017gmr) that shows an unusually early rise of the polarization, $gtrsim 30$ days before the start of the tail phase. This implies that SN~2017gmr is an SN IIP that has very extended asphericity. The asymmetries are not confined to the helium core, but reach out to a significant part of the outer hydrogen envelope, hence clearly indicating a marked intrinsic diversity in the aspherical structure of CC explosions. These observations provide new constraints on the explosion mechanism, where viable models must be able to produce such extended deviations from spherical symmetry, and account for the observed geometrical diversity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا