Do you want to publish a course? Click here

Unlocking Pixels for Reinforcement Learning via Implicit Attention

172   0   0.0 ( 0 )
 Added by Anirban Santara
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

There has recently been significant interest in training reinforcement learning (RL) agents in vision-based environments. This poses many challenges, such as high dimensionality and potential for observational overfitting through spurious correlations. A promising approach to solve both of these problems is a self-attention bottleneck, which provides a simple and effective framework for learning high performing policies, even in the presence of distractions. However, due to poor scalability of attention architectures, these methods do not scale beyond low resolution visual inputs, using large patches (thus small attention matrices). In this paper we make use of new efficient attention algorithms, recently shown to be highly effective for Transformers, and demonstrate that these new techniques can be applied in the RL setting. This allows our attention-based controllers to scale to larger visual inputs, and facilitate the use of smaller patches, even individual pixels, improving generalization. In addition, we propose a new efficient algorithm approximating softmax attention with what we call hybrid random features, leveraging the theory of angular kernels. We show theoretically and empirically that hybrid random features is a promising approach when using attention for vision-based RL.



rate research

Read More

Multi-agent reinforcement learning (MARL) requires coordination to efficiently solve certain tasks. Fully centralized control is often infeasible in such domains due to the size of joint action spaces. Coordination graph based formalization allows reasoning about the joint action based on the structure of interactions. However, they often require domain expertise in their design. This paper introduces the deep implicit coordination graph (DICG) architecture for such scenarios. DICG consists of a module for inferring the dynamic coordination graph structure which is then used by a graph neural network based module to learn to implicitly reason about the joint actions or values. DICG allows learning the tradeoff between full centralization and decentralization via standard actor-critic methods to significantly improve coordination for domains with large number of agents. We apply DICG to both centralized-training-centralized-execution and centralized-training-decentralized-execution regimes. We demonstrate that DICG solves the relative overgeneralization pathology in predatory-prey tasks as well as outperforms various MARL baselines on the challenging StarCraft II Multi-agent Challenge (SMAC) and traffic junction environments.
Meta-reinforcement learning algorithms can enable autonomous agents, such as robots, to quickly acquire new behaviors by leveraging prior experience in a set of related training tasks. However, the onerous data requirements of meta-training compounded with the challenge of learning from sensory inputs such as images have made meta-RL challenging to apply to real robotic systems. Latent state models, which learn compact state representations from a sequence of observations, can accelerate representation learning from visual inputs. In this paper, we leverage the perspective of meta-learning as task inference to show that latent state models can emph{also} perform meta-learning given an appropriately defined observation space. Building on this insight, we develop meta-RL with latent dynamics (MELD), an algorithm for meta-RL from images that performs inference in a latent state model to quickly acquire new skills given observations and rewards. MELD outperforms prior meta-RL methods on several simulated image-based robotic control problems, and enables a real WidowX robotic arm to insert an Ethernet cable into new locations given a sparse task completion signal after only $8$ hours of real world meta-training. To our knowledge, MELD is the first meta-RL algorithm trained in a real-world robotic control setting from images.
154 - Shariq Iqbal , Fei Sha 2018
Reinforcement learning in multi-agent scenarios is important for real-world applications but presents challenges beyond those seen in single-agent settings. We present an actor-critic algorithm that trains decentralized policies in multi-agent settings, using centrally computed critics that share an attention mechanism which selects relevant information for each agent at every timestep. This attention mechanism enables more effective and scalable learning in complex multi-agent environments, when compared to recent approaches. Our approach is applicable not only to cooperative settings with shared rewards, but also individualized reward settings, including adversarial settings, as well as settings that do not provide global states, and it makes no assumptions about the action spaces of the agents. As such, it is flexible enough to be applied to most multi-agent learning problems.
71 - Kenji Kawaguchi 2021
A deep equilibrium model uses implicit layers, which are implicitly defined through an equilibrium point of an infinite sequence of computation. It avoids any explicit computation of the infinite sequence by finding an equilibrium point directly via root-finding and by computing gradients via implicit differentiation. In this paper, we analyze the gradient dynamics of deep equilibrium models with nonlinearity only on weight matrices and non-convex objective functions of weights for regression and classification. Despite non-convexity, convergence to global optimum at a linear rate is guaranteed without any assumption on the width of the models, allowing the width to be smaller than the output dimension and the number of data points. Moreover, we prove a relation between the gradient dynamics of the deep implicit layer and the dynamics of trust region Newton method of a shallow explicit layer. This mathematically proven relation along with our numerical observation suggests the importance of understanding implicit bias of implicit layers and an open problem on the topic. Our proofs deal with implicit layers, weight tying and nonlinearity on weights, and differ from those in the related literature.
We accelerate deep reinforcement learning-based training in visually complex 3D environments by two orders of magnitude over prior work, realizing end-to-end training speeds of over 19,000 frames of experience per second on a single GPU and up to 72,000 frames per second on a single eight-GPU machine. The key idea of our approach is to design a 3D renderer and embodied navigation simulator around the principle of batch simulation: accepting and executing large batches of requests simultaneously. Beyond exposing large amounts of work at once, batch simulation allows implementations to amortize in-memory storage of scene assets, rendering work, data loading, and synchronization costs across many simulation requests, dramatically improving the number of simulated agents per GPU and overall simulation throughput. To balance DNN inference and training costs with faster simulation, we also build a computationally efficient policy DNN that maintains high task performance, and modify training algorithms to maintain sample efficiency when training with large mini-batches. By combining batch simulation and DNN performance optimizations, we demonstrate that PointGoal navigation agents can be trained in complex 3D environments on a single GPU in 1.5 days to 97% of the accuracy of agents trained on a prior state-of-the-art system using a 64-GPU cluster over three days. We provide open-source reference implementations of our batch 3D renderer and simulator to facilitate incorporation of these ideas into RL systems.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا