Do you want to publish a course? Click here

Quantum Algorithm for DOA Estimation in Hybrid Massive MIMO

86   0   0.0 ( 0 )
 Added by Fanxu Meng
 Publication date 2021
and research's language is English
 Authors Fanxu Meng




Ask ChatGPT about the research

The direction of arrival (DOA) estimation in array signal processing is an important research area. The effectiveness of the direction of arrival greatly determines the performance of multi-input multi-output (MIMO) antenna systems. The multiple signal classification (MUSIC) algorithm, which is the most canonical and widely used subspace-based method, has a moderate estimation performance of DOA. However, in hybrid massive MIMO systems, the received signals at the antennas are not sent to the receiver directly, and spatial covariance matrix, which is essential in MUSIC algorithm, is thus unavailable. Therefore, the spatial covariance matrix reconstruction is required for the application of MUSIC in hybrid massive MIMO systems. In this article, we present a quantum algorithm for MUSIC-based DOA estimation in hybrid massive MIMO systems. Compared with the best-known classical algorithm, our quantum algorithm can achieve an exponential speedup on some parameters and a polynomial speedup on others under some mild conditions. In our scheme, we first present the quantum subroutine for the beam sweeping based spatial covariance matrix reconstruction, where we implement a quantum singular vector transition process to avoid extending the steering vectors matrix into the Hermitian form. Second, a variational quantum density matrix eigensolver (VQDME) is proposed for obtaining signal and noise subspaces, where we design a novel objective function in the form of the trace of density matrices product. Finally, a quantum labeling operation is proposed for the direction of arrival estimation of the signal.



rate research

Read More

A large-scale fully-digital receive antenna array can provide very high-resolution direction of arrival (DOA) estimation, but resulting in a significantly high RF-chain circuit cost. Thus, a hybrid analog and digital (HAD) structure is preferred. Two phase alignment (PA) methods, HAD PA (HADPA) and hybrid digital and analog PA (HDAPA), are proposed to estimate DOA based on the parametric method. Compared to analog phase alignment (APA), they can significantly reduce the complexity in the PA phases. Subsequently, a fast root multiple signal classification HDAPA (Root-MUSIC-HDAPA) method is proposed specially for this hybrid structure to implement an approximately analytical solution. Due to the HAD structure, there exists the effect of direction-finding ambiguity. A smart strategy of maximizing the average receive power is adopted to delete those spurious solutions and preserve the true optimal solution by linear searching over a set of limited finite candidate directions. This results in a significant reduction in computational complexity. Eventually, the Cramer-Rao lower bound (CRLB) of finding emitter direction using the HAD structure is derived. Simulation results show that our proposed methods, Root-MUSIC-HDAPA and HDAPA, can achieve the hybrid CRLB with their complexities being significantly lower than those of pure linear searching-based methods, such as APA.
DOA estimation for massive multiple-input multiple-output (MIMO) system can provide ultra-high-resolution angle estimation. However, due to the high computational complexity and cost of all digital MIMO systems, a hybrid analog digital (HAD) structure MIMO was proposed. In this paper, a fast ambiguous phase elimination method is proposed to solve the problem of direction-finding ambiguity caused by the HAD MIMO. Only two-data-blocks are used to realize DOA estimation. Simulation results show that the proposed method can greatly reduce the estimation delay with a slight performance loss.
Due to the power consumption and high circuit cost in antenna arrays, the practical application of massive multipleinput multiple-output (MIMO) in the sixth generation (6G) and future wireless networks is still challenging. Employing lowresolution analog-to-digital converters (ADCs) and hybrid analog and digital (HAD) structure is two low-cost choice with acceptable performance loss. In this paper, the combination of the mixedADC architecture and HAD structure employed at receiver is proposed for direction of arrival (DOA) estimation, which will be applied to the beamforming tracking and alignment in 6G. By adopting the additive quantization noise model, the exact closedform expression of the Cramer-Rao lower bound (CRLB) for the HAD architecture with mixed-ADCs is derived. Moreover, the closed-form expression of the performance loss factor is derived as a benchmark. In addition, to take power consumption into account, energy efficiency is also investigated in our paper. The numerical results reveal that the HAD structure with mixedADCs can significantly reduce the power consumption and hardware cost. Furthermore, that architecture is able to achieve a better trade-off between the performance loss and the power consumption. Finally, adopting 2-4 bits of resolution may be a good choice in practical massive MIMO systems.
223 - Yinsheng Liu , Yiwei Yan , Li You 2021
Multiple signal classification (MUSIC) has been widely applied in multiple-input multiple-output (MIMO) receivers for direction-of-arrival (DOA) estimation. To reduce the cost of radio frequency (RF) chains operating at millimeter-wave bands, hybrid analog-digital structure has been adopted in massive MIMO transceivers. In this situation, the received signals at the antennas are unavailable to the digital receiver, and as a consequence, the spatial covariance matrix (SCM), which is essential in MUSIC algorithm, cannot be obtained using traditional sample average approach. Based on our previous work, we propose a novel algorithm for SCM reconstruction in hybrid massive MIMO systems with multiple RF chains. By switching the analog beamformers to a group of predetermined DOAs, SCM can be reconstructed through the solutions of a set of linear equations. In addition, based on insightful analysis on that linear equations, a low-complexity algorithm, as well as a careful selection of the predetermined DOAs, will be also presented in this paper. Simulation results show that the proposed algorithms can reconstruct the SCM accurately so that MUSIC algorithm can be well used for DOA estimation in hybrid massive MIMO systems with multiple RF chains.
In this paper, we propose a two-dimensional (2D) joint transmit array interpolation and beamspace design for planar array mono-static multiple-input-multiple-output (MIMO) radar for direction-of-arrival (DOA) estimation via tensor modeling. Our underlying idea is to map the transmit array to a desired array and suppress the transmit power outside the spatial sector of interest. In doing so, the signal-tonoise ratio is improved at the receive array. Then, we fold the received data along each dimension into a tensorial structure and apply tensor-based methods to obtain DOA estimates. In addition, we derive a close-form expression for DOA estimation bias caused by interpolation errors and argue for using a specially designed look-up table to compensate the bias. The corresponding Cramer-Rao Bound (CRB) is also derived. Simulation results are provided to show the performance of the proposed method and compare its performance to CRB.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا