The Spanning Tree Model for the Assembly Kinetics of RNA Viruses


Abstract in English

We present a simple kinetic model for the assembly of small single-stranded RNA viruses that can be used to carry out analytical packaging contests between different types of RNA molecules. The RNA selection mechanism is purely kinetic and based on small differences between the assembly energy profiles. RNA molecules that win these packaging contests are characterized by having a minimum Maximum Ladder Distance and a maximum Wrapping Number.The former is a topological invariant that measures the branchiness of the genome molecule while the latter measures the ability of the genome molecule to maximally associate with the capsid proteins. The model can also be used study the applicability of the theory of nucleation and growth to viral assembly, which breaks down with increasing strength of the RNA-protein interaction.

Download