Diffraction of electromagnetic waves by an extended gravitational lens


Abstract in English

We continue our study of the optical properties of the solar gravitational lens (SGL). Taking the next step beyond representing it as an idealized monopole, we now characterize the gravitational field of the Sun using an infinite series of multipole moments. We consider the propagation of electromagnetic (EM) waves in this gravitational field within the first post-Newtonian approximation of the general theory of relativity. The problem is formulated within the Mie diffraction theory. We solve Maxwells equations for the EM wave propagating in the background of a static gravitational field of an extended gravitating body, while accounting for multipole contributions. Using a wave-theoretical approach and the eikonal approximation, we find an exact closed form solution for the Debye potentials and determine the EM field at an image plane in the strong interference region of the lens. The resulting EM field is characterized by a new diffraction integral. We study this solution and show how the presence of multipoles affects the optical properties of the lens, resulting in distinct diffraction patterns. We identify the gravitational deflection angle with the individual contributions due to each of the multipoles. Treating the Sun as an extended, axisymmetric, rotating body, we show that each zonal harmonics causes light to diffract into an area whose boundary is a caustic of a particular shape. The appearance of the caustics modifies the point-spread function (PSF) of the lens, thus affecting its optical properties. The new wave-theoretical solution allows the study gravitational lensing by a realistic lens that possesses an arbitrary number of gravitational multipoles. This {em angular eikonal method} represents an improved treatment of realistic gravitational lensing. It may be used for a wave-optical description of many astrophysical lenses.

Download