Distributed computation is a framework used to break down a complex computational task into smaller tasks and distributing them among computational nodes. Erasure correction codes have recently been introduced and have become a popular workaround to the well known ``straggling nodes problem, in particular, by matching linear coding for linear computation tasks. It was observed that decoding tends to amplify the computation ``noise, i.e., the numerical errors at the computation nodes. We propose taking advantage of the case that more nodes return than minimally required. We show how a clever construction of a polynomial code, inspired by recent results on robust frames, can significantly reduce the amplification of noise, and achieves graceful degradation with the number of straggler nodes.