Do you want to publish a course? Click here

Robust and Secure Cache-aided Private Linear Function Retrieval from Coded Servers

199   0   0.0 ( 0 )
 Added by Qifa Yan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This work investigates a system where each user aims to retrieve a scalar linear function of the files of a library, which are Maximum Distance Separable coded and stored at multiple distributed servers. The system needs to guarantee robust decoding in the sense that each user must decode its demanded function with signals received from any subset of servers whose cardinality exceeds a threshold. In addition, (a) the content of the library must be kept secure from a wiretapper who obtains all the signals from the servers;(b) any subset of users together can not obtain any information about the demands of the remaining users; and (c) the users demands must be kept private against all the servers even if they collude. Achievable schemes are derived by modifying existing Placement Delivery Array (PDA) constructions, originally proposed for single-server single-file retrieval coded caching systems without any privacy or security or robustness constraints. It is shown that the PDAs describing the original Maddah-Ali and Niesens coded caching scheme result in a load-memory tradeoff that is optimal to within a constant multiplicative gap, except for the small memory regime when the number of file is smaller than the number of users. As by-products, improved order optimality results are derived for three less restrictive systems in all parameter regimes.



rate research

Read More

In the classical private information retrieval (PIR) setup, a user wants to retrieve a file from a database or a distributed storage system (DSS) without revealing the file identity to the servers holding the data. In the quantum PIR (QPIR) setting, a user privately retrieves a classical file by receiving quantum information from the servers. The QPIR problem has been treated by Song emph{et al.} in the case of replicated servers, both without collusion and with all but one servers colluding. In this paper, the QPIR setting is extended to account for maximum distance separable (MDS) coded servers. The proposed protocol works for any $[n,k]$-MDS code and $t$-collusion with $t=n-k$. Similarly to the previous cases, the rates achieved are better than those known or conjectured in the classical counterparts. Further, it is demonstrated how the protocol can adapted to achieve significantly higher retrieval rates from DSSs encoded with a locally repairable code (LRC) with disjoint repair groups, each of which is an MDS code.
This work investigates the problem of cache-aided content Secure and demand Private Linear Function Retrieval (SP-LFR), where three constraints are imposed on the system:(a) each user is interested in retrieving an arbitrary linear combination of the files in the servers library;(b) the content of the library must be kept secure from a wiretapper who obtains the signal sent by the server; and (c) no colluding subset of users together obtain information about the demands of the remaining users. A procedure is proposed to derive an SP-LFR scheme from a given Placement Delivery Array (PDA), which is known to give coded caching schemes with low subpacketization for systems with neither security nor privacy constraints. This procedure uses the superposition of security keys and privacy keys in both the cache placement and transmitted signal to guarantee content security and demand privacy, respectively. In particular, among all PDA-based SP-LFR schemes, the memory-load pairs achieved by the PDA describing the Maddah-Ali and Niesens scheme are Pareto-optimal and have the lowest subpacketization. Moreover, the achieved load-memory tradeoff is optimal to within a constant multiplicative gap except for the small memory regime (i.e., when the cache size is between 1 and 2) and the number of files is smaller than the number of users. Remarkably, the memory-load tradeoff does not increase compared to the best known schemes that guarantee either only content security in all regimes or only demand privacy in regime mentioned above.
In quantum private information retrieval (QPIR), a user retrieves a classical file from multiple servers by downloading quantum systems without revealing the identity of the file. The QPIR capacity is the maximal achievable ratio of the retrieved file size to the total download size. In this paper, the capacity of QPIR from MDS-coded and colluding servers is studied. Two classes of QPIR, called stabilizer QPIR and dimension squared QPIR induced from classical strongly linear PIR are defined, and the related QPIR capacities are derived. For the non-colluding case, the general QPIR capacity is derived when the number of files goes to infinity. The capacities of symmetric and non-symmetric QPIR with coded and colluding servers are proved to coincide, being double to their classical counterparts. A general statement on the converse bound for QPIR with coded and colluding servers is derived showing that the capacities of stabilizer QPIR and dimension squared QPIR induced from any class of PIR are upper bounded by twice the classical capacity of the respective PIR class. The proposed capacity-achieving scheme combines the star-product scheme by Freij-Hollanti et al. and the stabilizer QPIR scheme by Song et al. by employing (weakly) self-dual Reed--Solomon codes.
120 - Jinbao Zhu , Qifa Yan , Chao Qi 2019
In a distributed storage system, private information retrieval (PIR) guarantees that a user retrieves one file from the system without revealing any information about the identity of its interested file to any individual server. In this paper, we investigate $(N,K,M)$ coded sever model of PIR, where each of $M$ files is distributed to the $N$ servers in the form of $(N,K)$ maximum distance separable (MDS) code for some $N>K$ and $M>1$. As a result, we propose a new capacity-achieving $(N,K,M)$ coded linear PIR scheme such that it can be implemented with file length $frac{K(N-K)}{gcd(N,K)}$, which is much smaller than the previous best result $Kbig(frac{N}{gcd(N,K)}big)^{M-1}$. Notably, among all the capacity-achieving coded linear PIR schemes, we show that the file length is optimal if $M>biglfloor frac{K}{gcd(N,K)}-frac{K}{N-K}bigrfloor+1$, and within a multiplicative gap $frac{K}{gcd(N,K)}$ of a lower bound on the minimum file length otherwise.
This paper investigates reducing sub-packetization of capacity-achieving schemes for uncoded Storage Constrained Private Information Retrieval (SC-PIR) systems. In the SC-PIR system, a user aims to retrieve one out of $K$ files from $N$ servers while revealing nothing about its identity to any individual server, in which the $K$ files are stored at the $N$ servers in an uncoded form and each server can store up to $mu K$ equivalent files, where $mu$ is the normalized storage capacity of each server. We first prove that there exists a capacity-achieving SC-PIR scheme for a given storage design if and only if all the packets are stored exactly at $Mtriangleq mu N$ servers for $mu$ such that $M=mu Nin{2,3,ldots,N}$. Then, the optimal sub-packetization for capacity-achieving linear SC-PIR schemes is characterized as the solution to an optimization problem, which is typically hard to solve because of involving indicator functions. Moreover, a new notion of array called Storage Design Array (SDA) is introduced for the SC-PIR system. With any given SDA, an associated capacity-achieving SC-PIR scheme is constructed. Next, the SC-PIR schemes that have equal-size packets are investigated. Furthermore, the optimal equal-size sub-packetization among all capacity-achieving linear SC-PIR schemes characterized by Woolsey et al. is proved to be $frac{N(M-1)}{gcd(N,M)}$. Finally, by allowing unequal size of packets, a greedy SDA construction is proposed, where the sub-packetization of the associated SC-PIR scheme is upper bounded by $frac{N(M-1)}{gcd(N,M)}$. Among all capacity-achieving linear SC-PIR schemes, the sub-packetization is optimal when $min{M,N-M}|N$ or $M=N$, and within a multiplicative gap $frac{min{M,N-M}}{gcd(N,M)}$ of the optimal one otherwise. In particular, for the case $N=dcdot Mpm1$ where $dgeq 2$, another SDA is constructed to obtain lower sub-packetization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا