No Arabic abstract
Galactic outflows driven by starbursts can modify the galactic magnetic fields and drive them away from the galactic planes. Here, we quantify how these fields may magnetize the intergalactic medium. We estimate the strength and structure of the fields in the starburst galaxy M82 using thermal polarized emission observations from SOFIA/HAWC+ and a potential field extrapolation commonly used in solar physics. We modified the Davis-Chandrasekhar-Fermi method to account for the large-scale flow and the turbulent field. Results show that the observed magnetic fields arise from the combination of a large-scale ordered potential field associated with the outflow and a small-scale turbulent field associated with bow-shock-like features. Within the central $900$ pc radius, the large-scale field accounts for $53pm4$% of the observed turbulent magnetic energy with a median field strength of $305pm15$ $mu$G, while small-scale turbulent magnetic fields account for the remaining $40pm5$% with a median field strength of $222pm19$ $mu$G. We estimate that the turbulent kinetic and turbulent magnetic energies are in close equipartition up to $sim2$ kpc (measured), while the turbulent kinetic energy dominates at $sim7$ kpc (extrapolated). We conclude that the fields are frozen into the ionized outflowing medium and driven away kinetically. The magnetic field lines in the galactic wind of M82 are `open, providing a direct channel between the starburst core and the intergalactic medium. Our novel approach offers the tools needed to quantify the effects of outflows on galactic magnetic fields as well as their influence on the intergalactic medium and evolution of energetic particles.
We observed the starburst galaxy M82 in 850$mu$m polarised light with the POL-2 polarimeter on the James Clerk Maxwell Telescope (JCMT). We interpret our observed polarisation geometry as tracing a two-component magnetic field: a poloidal component aligned with the galactic superwind, extending to a height $sim 350$ pc above and below the central bar; and a spiral-arm-aligned, or possibly toroidal, component in the plane of the galaxy, which dominates the 850$mu$m polarised light distribution at galactocentric radii $gtrsim 2$ kpc. Comparison of our results with recent HAWC+ measurements of the field in the dust entrained by the M82 superwind suggests that the superwind breaks out from the central starburst at $sim 350$ pc above the plane of the galaxy.
The role of magnetic fields in the multi-phase interstellar medium (ISM) is explored using magnetohydrodynamic (MHD) simulations that include energy injection by supernova (SN) explosions and allow for dynamo action. Apart from providing additional pressure support of the gas layer, magnetic fields reduce the density contrast between the warm and hot gas phases and quench galactic outflows. A dynamo-generated, self-consistent large-scale magnetic field affects the ISM differently from an artificially imposed, unidirectional magnetic field.
A new method for measuring the global magnetic field structure of the Galactic plane is presented. We have determined the near-infrared polarization of field stars around 52 Cepheids found in recent surveys toward the Galactic plane. The Cepheids are located at the galactic longitudes $-10^{circ}leq , l, leq +10.5^{circ}$ and latitudes $-0.22^{circ}leq , l, leq +0.45^{circ}$, and their distances are mainly in the range of 10 to 15 kpc from the Sun. Simple classification of the sightlines is made with the polarization behavior vs. $H-K_{mathrm S}$ color of field stars, and typical examples of three types are presented. Then, division of the field stars in each line of sight into (a) foreground, (b) bulge, and (c) background is made with the $Gaia$ DR2 catalog, the peak of the $H-K_{mathrm S}$ color histogram, and $H-K_{mathrm S}$ colors consistent with the distance of the Cepheid in the center, respectively. Differential analysis between them enables us to examine the magnetic field structure more definitely than just relying on the $H-K_{mathrm S}$ color difference. In one line of sight, the magnetic field is nearly parallel to the Galactic plane and well aligned all the way from the Sun to the Cepheid position on the other side of the Galactic center. Contrary to our preconceived ideas, however, sightlines having such well-aligned magnetic fields in the Galactic plane are rather small in number. At least 36 Cepheid fields indicate random magnetic field components are significant. Two Cepheid fields indicate that the magnetic field orientation changes more than 45 in the line of sight. The polarization increase per color change $P$/ ($H-K_{mathrm S}$) varies from region to region, reflecting the change in the ratio of the magnetic field strength and the turbulence strength.
Low-frequency radio continuum observations of edge-on galaxies are ideal to study cosmic-ray electrons (CREs) in halos via radio synchrotron emission and to measure magnetic field strengths. We obtained new observations of the edge-on spiral galaxy NGC 891 at 129-163 MHz with the LOw Frequency ARray (LOFAR) and at 13-18 GHz with the Arcminute Microkelvin Imager (AMI) and combine them with recent high-resolution Very Large Array (VLA) observations at 1-2 GHz, enabling us to study the radio continuum emission over two orders of magnitude in frequency. The spectrum of the integrated nonthermal flux density can be fitted by a power law with a spectral steepening towards higher frequencies or by a curved polynomial. Spectral flattening at low frequencies due to free-free absorption is detected in star-forming regions of the disk. The mean magnetic field strength in the halo is 7 +- 2 $mu$G. The scale heights of the nonthermal halo emission at 146 MHz are larger than those at 1.5 GHz everywhere, with a mean ratio of 1.7 +- 0.3, indicating that spectral ageing of CREs is important and that diffusive propagation dominates. The halo scale heights at 146 MHz decrease with increasing magnetic field strengths which is a signature of dominating synchrotron losses of CREs. On the other hand, the spectral index between 146 MHz and 1.5 GHz linearly steepens from the disk to the halo, indicating that advection rather than diffusion is the dominating CRE transport process. This issue calls for refined modelling of CRE propagation.
We study the statistical properties of interstellar dust polarization at high Galactic latitude, using the Stokes parameter Planck maps at 353 GHz. Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a model of the polarized dust foreground for cosmic microwave background component-separation procedures. Focusing on the southern Galactic cap, we examine the statistical distributions of the polarization fraction ($p$) and angle ($psi$) to characterize the ordered and turbulent components of the Galactic magnetic field (GMF) in the solar neighbourhood. We relate patterns at large angular scales in polarization to the orientation of the mean (ordered) GMF towards Galactic coordinates $(l_0,b_0)=(70^circ pm 5^circ,24^circ pm 5^circ)$. The histogram of $p$ shows a wide dispersion up to 25 %. The histogram of $psi$ has a standard deviation of $12^circ$ about the regular pattern expected from the ordered GMF. We use these histograms to build a phenomenological model of the turbulent component of the GMF, assuming a uniform effective polarization fraction ($p_0$) of dust emission. To model the Stokes parameters, we approximate the integration along the line of sight (LOS) as a sum over a set of $N$ independent polarization layers, in each of which the turbulent component of the GMF is obtained from Gaussian realizations of a power-law power spectrum. We are able to reproduce the observed $p$ and $psi$ distributions using: a $p_0$ value of (26 $pm$ 3)%; a ratio of 0.9 $pm$ 0.1 between the strengths of the turbulent and mean components of the GMF; and a small value of $N$. We relate the polarization layers to the density structure and to the correlation length of the GMF along the LOS.