Do you want to publish a course? Click here

First T2K measurement of transverse kinematic imbalance in the muon-neutrino charged-current single-$pi^+$ production channel containing at least one proton

131   0   0.0 ( 0 )
 Added by Ciro Riccio
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

This paper reports the first T2K measurement of the transverse kinematic imbalance in the single-$pi^+$ production channel of neutrino interactions. We measure the differential cross sections in the muon-neutrino charged-current interaction on hydrocarbon with a single $pi^+$ and at least one proton in the final state, at the ND280 off-axis near detector of the T2K experiment. The extracted cross sections are compared to the predictions from different neutrino-nucleus interaction event generators. Overall, the results show a preference for models which have a more realistic treatment of nuclear medium effects including the initial nuclear state and final-state interactions.



rate research

Read More

195 - K. Abe , R. Akutsu , A. Ali 2019
We report the measurements of single and double differential cross section of muon neutrino charged-current interactions on carbon with a single positively charged pion in the final state at the T2K off-axis near detector using $5.56times10^{20}$ protons on target. The analysis uses data control samples for the background subtraction and the cross section signal, defined as a single negatively charged muon and a single positively charged pion exiting from the target nucleus, is extracted using an unfolding method. The model dependent cross section, integrated over the T2K off-axis neutrino beam spectrum peaking at $0.6$~GeV, is measured to be $sigma = (11.76 pm 0.44 text{(stat)} pm 2.39 text{(syst)}) times 10^{-40} text{cm}^2$~$text{nucleon}^{-1}$. Various differential cross sections are measured, including the first measurement of the Adler angles for single charged pion production in neutrino interactions with heavy nuclei target.
The T2K off-axis near detector, ND280, is used to make the first differential cross section measurements of muon neutrino charged current single positive pion production on a water target at energies ${sim}0.8$ GeV. The differential measurements are presented as a function of muon and pion kinematics, in the restricted phase-space defined by $p_{pi^+}>200$MeV/c, $p_{mu^-}>200$MeV/c, $cos theta_{pi^+}>0.3$ and $cos theta_{mu^-}>0.3$. The total flux integrated $ u_mu$ charged current single positive pion production cross section on water in the restricted phase-space is measured to be $langlesigmarangle_phi=4.25pm0.48 (mathrm{stat})pm1.56 (mathrm{syst})times10^{-40} mathrm{cm}^{2}/mathrm{nucleon}$. The total cross section is consistent with the NEUT prediction ($5.03times10^{-40} mathrm{cm}^{2}/mathrm{nucleon}$) and 2$sigma$ lower than the GENIE prediction ($7.68times10^{-40} mathrm{cm}^{2}/mathrm{nucleon}$). The differential cross sections are in good agreement with the NEUT generator. The GENIE simulation reproduces well the shapes of the distributions, but over-estimates the overall cross section normalization.
We report the first measurement of monoenergetic muon neutrino charged current interactions. MiniBooNE has isolated 236 MeV muon neutrino events originating from charged kaon decay at rest ($K^+ rightarrow mu^+ u_mu$) at the NuMI beamline absorber. These signal $ u_mu$-carbon events are distinguished from primarily pion decay in flight $ u_mu$ and $overline{ u}_mu$ backgrounds produced at the target station and decay pipe using their arrival time and reconstructed muon energy. The significance of the signal observation is at the 3.9$sigma$ level. The muon kinetic energy, neutrino-nucleus energy transfer ($omega=E_ u-E_mu$), and total cross section for these events is extracted. This result is the first known-energy, weak-interaction-only probe of the nucleus to yield a measurement of $omega$ using neutrinos, a quantity thus far only accessible through electron scattering.
149 - K. Abe , R. Akutsu , A. Ali 2020
This paper presents the first combined measurement of the double-differential muon neutrino and antineutrino charged-current cross sections with no pions in the final state on hydrocarbon at the off-axis near detector of the T2K experiment. The data analyzed in this work comprise 5.8$times$10$^{20}$ and 6.3$times$10$^{20}$ protons on target in neutrino and antineutrino mode respectively, at a beam energy peak of 0.6 GeV. Using the two measured cross sections, the sum, difference and asymmetry were calculated with the aim of better understanding the nuclear effects involved in such interactions. The extracted measurements have been compared with the prediction from different Monte Carlo generators and theoretical models showing that the difference between the two cross sections have interesting sensitivity to nuclear effects.
91 - Stephen Dolan 2016
In this work we utilise variables characterising kinematic imbalance in the plane transverse to an incoming neutrino, which have recently been shown to act as a direct probe of nuclear effects (such as final state interactions, Fermi motion and multi-nucleon processes) in $mathcal{O}$(GeV) neutrino scattering. We present a methodology to measure the charged current differential cross-section with no final state pions and at least one final state proton ($CC0pi+Np, N geq 1$) in these variables at the near detector of the T2K experiment (ND280), using the upstream Fine Grained Detector (FGD1) as a hydrocarbon target. Overall these measurements will allow us to better understand the impact of nuclear effects on the observables in neutrino scattering, providing valuable constraints on the systematic uncertainties associated with neutrino oscillation and scattering measurements for both T2K and other experiments with similar energy neutrino beams.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا