Do you want to publish a course? Click here

Ground-State Cooling of Levitated Magnets in Low-Frequency Traps

79   0   0.0 ( 0 )
 Added by Kirill Streltsov
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a ground-state cooling scheme for the mechanical degrees of freedom of mesoscopic magnetic particles levitated in low-frequency traps. Our method makes use of a binary sensor and suitably shaped pulses to perform weak, adaptive measurements on the position of the magnet. This allows us to precisely determine the position and momentum of the particle, transforming the initial high-entropy thermal state into a pure coherent state. The energy is then extracted by shifting the trap center. By delegating the task of energy extraction to a coherent displacement operation we overcome the limitations associated with cooling schemes that rely on the dissipation of a two-level system coupled to the oscillator. We numerically benchmark our protocol in realistic experimental conditions, including heating rates and imperfect readout fidelities, showing that it is well suited for magnetogravitational traps operating at cryogenic temperatures. Our results pave the way for ground-state cooling of micron-scale particles.



rate research

Read More

We consider a possible route to ground state cooling of a levitated nanoparticle, magnetically trapped by a strong permanent magnet, using a combination of measurement and feedback. The trap frequency of this system is much lower than those involving trapped ions or nano-mechanical resonators. Minimisation of environmental heating is therefore challenging as it requires control of the system on a timescale comparable to the inverse of the trap frequency. We show that these traps are an excellent platform for performing optimal feedback control via real-time state estimation, for the preparation of motional states with measurable quantum properties.
We investigate single ions of $^{40}Ca^+$ in Paul traps for quantum information processing. Superpositions of the S$_{1/2}$ electronic ground state and the metastable D$_{5/2}$ state are used to implement a qubit. Laser light on the S$_{1/2} leftrightarrow$ D$_{5/2}$ transition is used for the manipulation of the ions quantum state. We apply sideband cooling to the ion and reach the ground state of vibration with up to 99.9% probability. Starting from this Fock state $|n=0>$, we demonstrate coherent quantum state manipulation. A large number of Rabi oscillations and a ms-coherence time is observed. Motional heating is measured to be as low as one vibrational quantum in 190 ms. We also report on ground state cooling of two ions.
We theoretically show that a magnet can be stably levitated on top of a punctured superconductor sheet in the Meissner state without applying any external field. The trapping potential created by such induced-only superconducting currents is characterized for magnetic spheres ranging from tens of nanometers to tens of millimeters. Such a diamagnetically levitated magnet is predicted to be extremely well isolated from the environment. We therefore propose to use it as an ultrasensitive force and inertial sensor. A magnetomechanical read-out of its displacement can be performed by using superconducting quantum interference devices. An analysis using current technology shows that force and acceleration sensitivities on the order of $10^{-23}text{N}/sqrt{text{Hz}}$ (for a 100 nm magnet) and $10^{-14}g/sqrt{text{Hz}}$ (for a 10 mm magnet) might be within reach in a cryogenic environment. Such unprecedented sensitivities can be used for a variety of purposes, from designing ultra-sensitive inertial sensors for technological applications (i.e. gravimetry, avionics, and space industry), to scientific investigations on measuring Casimir forces of magnetic origin and gravitational physics.
Optomechanical systems explore and exploit the coupling between light and the mechanical motion of matter. A nonlinear coupling offers access to rich new physics, in both the quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising of a nanosphere levitated and cooled in a hybrid electro-optical trap. An optical cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, whilst simultaneously cooling the nanosphere to millikelvin temperatures for indefinite periods of time in high vacuum. We observe cooling of the linear and non-linear motion, leading to a $10^5$ fold reduction in phonon number $n_p$, attaining final occupancies of $n_p = 100-1000$. This work puts cavity cooling of a levitated object to the quantum ground-state firmly within reach.
We theoretically analyse the ground-state cooling of optically levitated nanosphere in unresolved- sideband regime by introducing a coupled high-quality-factor cavity. On account of the quantum interference stemming from the presence of the coupled cavity, the spectral density of the optical force exerting on the nanosphere gets changed and then the symmetry between the heating and the cooling processes is broken. Through adjusting the detuning of strong-dissipative cavity mode, one obtains an enhanced net cooling rate for the nanosphere. It is illustrated that the ground state cooling can be realized in the unresolved sideband regime even if the effective optomechanical coupling is weaker than the frequency of the nanosphere, which can be understood by the picture that the effective interplay of the nanosphere and the auxiliary cavity mode brings the system back to an effective resolved regime. Besides, the coupled cavity refines the dynamical stability of the system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا