Do you want to publish a course? Click here

Compressed Object Detection

225   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Deep learning approaches have achieved unprecedented performance in visual recognition tasks such as object detection and pose estimation. However, state-of-the-art models have millions of parameters represented as floats which make them computationally expensive and constrain their deployment on hardware such as mobile phones and IoT nodes. Most commonly, activations of deep neural networks tend to be sparse thus proving that models are over parametrized with redundant neurons. Model compression techniques, such as pruning and quantization, have recently shown promising results by improving model complexity with little loss in performance. In this work, we extended pruning, a compression technique that discards unnecessary model connections, and weight sharing techniques for the task of object detection. With our approach, we are able to compress a state-of-the-art object detection model by 30.0% without a loss in performance. We also show that our compressed model can be easily initialized with existing pre-trained weights, and thus is able to fully utilize published state-of-the-art model zoos.



rate research

Read More

Object detection in videos has drawn increasing attention since it is more practical in real scenarios. Most of the deep learning methods use CNNs to process each decoded frame in a video stream individually. However, the free of charge yet valuable motion information already embedded in the video compression format is usually overlooked. In this paper, we propose a fast object detection method by taking advantage of this with a novel Motion aided Memory Network (MMNet). The MMNet has two major advantages: 1) It significantly accelerates the procedure of feature extraction for compressed videos. It only need to run a complete recognition network for I-frames, i.e. a few reference frames in a video, and it produces the features for the following P frames (predictive frames) with a light weight memory network, which runs fast; 2) Unlike existing methods that establish an additional network to model motion of frames, we take full advantage of both motion vectors and residual errors that are freely available in video streams. To our best knowledge, the MMNet is the first work that investigates a deep convolutional detector on compressed videos. Our method is evaluated on the large-scale ImageNet VID dataset, and the results show that it is 3x times faster than single image detector R-FCN and 10x times faster than high-performance detector MANet at a minor accuracy loss.
210 - Zili Liu , Tu Zheng , Guodong Xu 2019
Modern object detectors can rarely achieve short training time, fast inference speed, and high accuracy at the same time. To strike a balance among them, we propose the Training-Time-Friendly Network (TTFNet). In this work, we start with light-head, single-stage, and anchor-free designs, which enable fast inference speed. Then, we focus on shortening training time. We notice that encoding more training samples from annotated boxes plays a similar role as increasing batch size, which helps enlarge the learning rate and accelerate the training process. To this end, we introduce a novel approach using Gaussian kernels to encode training samples. Besides, we design the initiative sample weights for better information utilization. Experiments on MS COCO show that our TTFNet has great advantages in balancing training time, inference speed, and accuracy. It has reduced training time by more than seven times compared to previous real-time detectors while maintaining state-of-the-art performances. In addition, our super-fast version of TTFNet-18 and TTFNet-53 can outperform SSD300 and YOLOv3 by less than one-tenth of their training time, respectively. The code has been made available at url{https://github.com/ZJULearning/ttfnet}.
Aerial imagery has been increasingly adopted in mission-critical tasks, such as traffic surveillance, smart cities, and disaster assistance. However, identifying objects from aerial images faces the following challenges: 1) objects of interests are often too small and too dense relative to the images; 2) objects of interests are often in different relative sizes; and 3) the number of objects in each category is imbalanced. A novel network structure, Points Estimated Network (PENet), is proposed in this work to answer these challenges. PENet uses a Mask Resampling Module (MRM) to augment the imbalanced datasets, a coarse anchor-free detector (CPEN) to effectively predict the center points of the small object clusters, and a fine anchor-free detector FPEN to locate the precise positions of the small objects. An adaptive merge algorithm Non-maximum Merge (NMM) is implemented in CPEN to address the issue of detecting dense small objects, and a hierarchical loss is defined in FPEN to further improve the classification accuracy. Our extensive experiments on aerial datasets visDrone and UAVDT showed that PENet achieved higher precision results than existing state-of-the-art approaches. Our best model achieved 8.7% improvement on visDrone and 20.3% on UAVDT.
Usually, Neural Networks models are trained with a large dataset of images in homogeneous backgrounds. The issue is that the performance of the network models trained could be significantly degraded in a complex and heterogeneous environment. To mitigate the issue, this paper develops a framework that permits to autonomously generate a training dataset in heterogeneous cluttered backgrounds. It is clear that the learning effectiveness of the proposed framework should be improved in complex and heterogeneous environments, compared with the ones with the typical dataset. In our framework, a state-of-the-art image segmentation technique called DeepLab is used to extract objects of interest from a picture and Chroma-key technique is then used to merge the extracted objects of interest into specific heterogeneous backgrounds. The performance of the proposed framework is investigated through empirical tests and compared with that of the model trained with the COCO dataset. The results show that the proposed framework outperforms the model compared. This implies that the learning effectiveness of the framework developed is superior to the models with the typical dataset.
Detecting objects in 3D LiDAR data is a core technology for autonomous driving and other robotics applications. Although LiDAR data is acquired over time, most of the 3D object detection algorithms propose object bounding boxes independently for each frame and neglect the useful information available in the temporal domain. To address this problem, in this paper we propose a sparse LSTM-based multi-frame 3d object detection algorithm. We use a U-Net style 3D sparse convolution network to extract features for each frames LiDAR point-cloud. These features are fed to the LSTM module together with the hidden and memory features from last frame to predict the 3d objects in the current frame as well as hidden and memory features that are passed to the next frame. Experiments on the Waymo Open Dataset show that our algorithm outperforms the traditional frame by frame approach by 7.5% [email protected] and other multi-frame approaches by 1.2% while using less memory and computation per frame. To the best of our knowledge, this is the first work to use an LSTM for 3D object detection in sparse point clouds.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا