Do you want to publish a course? Click here

Improving the variational quantum eigensolver using variational adiabatic quantum computing

144   0   0.0 ( 0 )
 Added by Stuart Harwood
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm for finding the minimum eigenvalue of a Hamiltonian that involves the optimization of a parameterized quantum circuit. Since the resulting optimization problem is in general nonconvex, the method can converge to suboptimal parameter values which do not yield the minimum eigenvalue. In this work, we address this shortcoming by adopting the concept of variational adiabatic quantum computing (VAQC) as a procedure to improve VQE. In VAQC, the ground state of a continuously parameterized Hamiltonian is approximated via a parameterized quantum circuit. We discuss some basic theory of VAQC to motivate the development of a hybrid quantum-classical homotopy continuation method. The proposed method has parallels with a predictor-corrector method for numerical integration of differential equations. While there are theoretical limitations to the procedure, we see in practice that VAQC can successfully find good initial circuit parameters to initialize VQE. We demonstrate this with two examples from quantum chemistry. Through these examples, we provide empirical evidence that VAQC, combined with other techniques (an adaptive termination criteria for the classical optimizer and a variance-based resampling method for the expectation evaluation), can provide more accurate solutions than plain VQE, for the same amount of effort.



rate research

Read More

The problem of finding the ground state energy of a Hamiltonian using a quantum computer is currently solved using either the quantum phase estimation (QPE) or variational quantum eigensolver (VQE) algorithms. For precision $epsilon$, QPE requires $O(1)$ repetitions of circuits with depth $O(1/epsilon)$, whereas each expectation estimation subroutine within VQE requires $O(1/epsilon^{2})$ samples from circuits with depth $O(1)$. We propose a generalised VQE algorithm that interpolates between these two regimes via a free parameter $alphain[0,1]$ which can exploit quantum coherence over a circuit depth of $O(1/epsilon^{alpha})$ to reduce the number of samples to $O(1/epsilon^{2(1-alpha)})$. Along the way, we give a new routine for expectation estimation under limited quantum resources that is of independent interest.
The variational quantum eigensolver (VQE) is one of the most representative quantum algorithms in the noisy intermediate-size quantum (NISQ) era, and is generally speculated to deliver one of the first quantum advantages for the ground-state simulations of some non-trivial Hamiltonians. However, short quantum coherence time and limited availability of quantum hardware resources in the NISQ hardware strongly restrain the capacity and expressiveness of VQEs. In this Letter, we introduce the variational quantum-neural hybrid eigensolver (VQNHE) in which the shallow-circuit quantum ansatz can be further enhanced by classical post-processing with neural networks. We show that VQNHE consistently and significantly outperforms VQE in simulating ground-state energies of quantum spins and molecules given the same amount of quantum resources. More importantly, we demonstrate that for arbitrary post-processing neural functions, VQNHE only incurs an polynomial overhead of processing time and represents the first scalable method to exponentially accelerate VQE with non-unitary post-processing that can be efficiently implemented in the NISQ era.
Hybrid quantum-classical algorithms have been proposed as a potentially viable application of quantum computers. A particular example - the variational quantum eigensolver, or VQE - is designed to determine a global minimum in an energy landscape specified by a quantum Hamiltonian, which makes it appealing for the needs of quantum chemistry. Experimental realizations have been reported in recent years and theoretical estimates of its efficiency are a subject of intense effort. Here we consider the performance of the VQE technique for a Hubbard-like model describing a one-dimensional chain of fermions with competing nearest- and next-nearest-neighbor interactions. We find that recovering the VQE solution allows one to obtain the correlation function of the ground state consistent with the exact result. We also study the barren plateau phenomenon for the Hamiltonian in question and find that the severity of this effect depends on the encoding of fermions to qubits. Our results are consistent with the current knowledge about the barren plateaus in quantum optimization.
We develop an extension of the variational quantum eigensolver (VQE) algorithm - multistate, contracted VQE (MC-VQE) - that allows for the efficient computation of the transition energies between the ground state and several low-lying excited states of a molecule, as well as the oscillator strengths associated with these transitions. We numerically simulate MC-VQE by computing the absorption spectrum of an ab initio exciton model of an 18-chromophore light-harvesting complex from purple photosynthetic bacteria.
Variational algorithms for strongly correlated chemical and materials systems are one of the most promising applications of near-term quantum computers. We present an extension to the variational quantum eigensolver that approximates the ground state of a system by solving a generalized eigenvalue problem in a subspace spanned by a collection of parametrized quantum states. This allows for the systematic improvement of a logical wavefunction ansatz without a significant increase in circuit complexity. To minimize the circuit complexity of this approach, we propose a strategy for efficiently measuring the Hamiltonian and overlap matrix elements between states parametrized by circuits that commute with the total particle number operator. We also propose a classical Monte Carlo scheme to estimate the uncertainty in the ground state energy caused by a finite number of measurements of the matrix elements. We explain how this Monte Carlo procedure can be extended to adaptively schedule the required measurements, reducing the number of circuit executions necessary for a given accuracy. We apply these ideas to two model strongly correlated systems, a square configuration of H$_4$ and the $pi$-system of Hexatriene (C$_6$H$_8$).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا