Do you want to publish a course? Click here

Mobility spaces and geodesics for the n-sphere

79   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We introduce an algebraic system which can be used as a model for spaces with geodesic paths between any two of their points. This new algebraic structure is based on the notion of mobility algebra which has recently been introduced as a model for the unit interval of real numbers. We show that there is a strong connection between modules over a ring and affine mobility spaces over a mobility algebra. However, geodesics in general fail to be affine thus giving rise to the new algebraic structure of mobility space. We show that the so called formula for spherical linear interpolation, which gives geodesics on the n-sphere, is an example of a mobility space over the unit interval mobility algebra.



rate research

Read More

We express the Masur-Veech volume and the area Siegel-Veech constant of the moduli space of meromorphic quadratic differential with simple poles as polynomials in the intersection numbers of psi-classes supported on the boundary cycles of the Deligne-Mumford compactification of the moduli space of curves. Our formulae are derived from lattice point count involving the Kontsevich volume polynomials that also appear in Mirzakhanis recursion for the Weil-Petersson volumes of the moduli space of bordered hyperbolic Riemann surfaces. A similar formula for the Masur-Veech volume (though without explicit evaluation) was obtained earlier by Mirzakhani through completely different approach. We prove further result: up to an explicit normalization factor depending only on the genus and on the number of cusps, the density of the orbit of any simple closed multicurve computed by Mirzakhani coincides with the density of square-tiled surfaces having horizontal cylinder decomposition associated to the simple closed multicurve. We study the resulting densities in more detail in the special case when there are no cusps. In particular, we compute explicitly the asymptotic frequencies of separating and non-separating simple closed geodesics on a closed hyperbolic surface of genus g for all small genera g and we show that in large genera the separating closed geodesics are exponentially less frequent. We conclude with detailed conjectural description of combinatorial geometry of a random simple closed multicurve on a surface of large genus and of a random square-tiled surface of large genus. This description is conditional to the conjectural asymptotic formula for the Masur-Veech volume in large genera and to the conjectural uniform asymptotic formula for certain sums of intersection numbers of psi-classes in large genera.
We express the Masur-Veech volume and the area Siegel-Veech constant of the moduli space $mathcal{Q}_{g,n}$ of genus $g$ meromorphic quadratic differentials with $n$ simple poles as polynomials in the intersection numbers of $psi$-classes with explicit rational coefficients. The formulae obtained in this article result from lattice point counts involving the Kontsevich volume polynomials that also appear in Mirzakhanis recursion for the Weil-Petersson volumes of the moduli spaces of bordered hyperbolic surfaces with geodesic boundaries. A similar formula for the Masur-Veech volume (though without explicit evaluation) was obtained earlier by Mirzakhani via completely different approach. Furthermore, we prove that the density of the mapping class group orbit of any simple closed multicurve $gamma$ inside the ambient set of integral measured laminations computed by Mirzakhani coincides with the density of square-tiled surfaces having horizontal cylinder decomposition associated to $gamma$ among all square-tiled surfaces in $mathcal{Q}_{g,n}$. We study the resulting densities (or, equivalently, volume contributions) in more detail in the special case $n=0$. In particular, we compute the asymptotic frequencies of separating and non-separating simple closed geodesics on a closed hyperbolic surface of genus $g$ for small $g$ and we show that for large genera the separating closed geodesics are $sqrt{frac{2}{3pi g}}cdotfrac{1}{4^g}$ times less frequent.
We recursively determine the homotopy type of the space of any irreducible framed link in the 3-sphere, modulo rotations. This leads us to the homotopy type of the space of any knot in the solid torus, thus answering a question posed by Arnold. We similarly study spaces of unframed links in the 3-sphere, modulo rotations, and spaces of knots in the thickened torus. The subgroup of meridional rotations splits as a direct factor of the fundamental group of the space of any framed link except the unknot. Its generators can be viewed as generalizations of the Gramain loop in the space of long knots. Taking the quotient by certain such rotations relates the spaces we study. All of our results generalize previous work of Hatcher and Budney. We provide many examples and explicitly describe generators of fundamental groups.
96 - Joan Birman , Dan Margalit , 2014
We give an algorithm for determining the distance between two vertices of the complex of curves. While there already exist such algorithms, for example by Leasure, Shackleton, and Webb, our approach is new, simple, and more effective for all distances accessible by computer. Our method gives a new preferred finite set of geodesics between any two vertices of the complex, called efficient geodesics, which are different from the tight geodesics introduced by Masur and Minsky.
257 - Tao Li 2008
We show that given a trivalent graph in $S^3$, either the graph complement contains an essential almost meridional planar surface or thin position for the graph is also bridge position. This can be viewed as an extension of a theorem of Thompson to graphs. It follows that any graph complement always contains a useful planar surface.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا