Do you want to publish a course? Click here

High-Rate Quantum Private Information Retrieval with Weakly Self-Dual Star Product Codes

82   0   0.0 ( 0 )
 Added by Matteo Allaix
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In the classical private information retrieval (PIR) setup, a user wants to retrieve a file from a database or a distributed storage system (DSS) without revealing the file identity to the servers holding the data. In the quantum PIR (QPIR) setting, a user privately retrieves a classical file by receiving quantum information from the servers. The QPIR problem has been treated by Song et al. in the case of replicated servers, both with and without collusion. QPIR over $[n,k]$ maximum distance separable (MDS) coded servers was recently considered by Allaix et al., but the collusion was essentially restricted to $t=n-k$ servers in the sense that a smaller $t$ would not improve the retrieval rate. In this paper, the QPIR setting is extended to allow for retrieval with high rate for any number of colluding servers $t$ with $1 leq t leq n-k$. Similarly to the previous cases, the rates achieved are better than those known or conjectured in the classical counterparts, as well as those of the previously proposed coded and colluding QPIR schemes. This is enabled by considering the stabilizer formalism and weakly self-dual generalized Reed--Solomon (GRS) star product codes.



rate research

Read More

106 - Tao Guo , Ruida Zhou , Chao Tian 2019
We consider information leakage to the user in private information retrieval (PIR) systems. Information leakage can be measured in terms of individual message leakage or total leakage. Individual message leakage, or simply individual leakage, is defined as the amount of information that the user can obtain on any individual message that is not being requested, and the total leakage is defined as the amount of information that the user can obtain about all the other messages except the one being requested. In this work, we characterize the tradeoff between the minimum download cost and the individual leakage, and that for the total leakage, respectively. New codes are proposed to achieve these optimal tradeoffs, which are also shown to be optimal in terms of the message size. We further characterize the optimal tradeoff between the minimum amount of common randomness and the total leakage. Moreover, we show that under individual leakage, common randomness is in fact unnecessary when there are more than two messages.
We consider the problem of Private Information Retrieval with Private Side Information (PIR-PSI), wherein a user wants to retrieve a file from replication based non-colluding databases by using the prior knowledge of a subset of the files stored on the databases. The PIR-PSI framework ensures that the privacy of the demand and the side information are jointly preserved, thereby finding potential applications when multiple files have to be downloaded spread across different time-instants. Although the capacity of the PIR-PSI setting is known, we observe that the underlying capacity achieving code construction uses Maximum Distance Separable (MDS) codes thereby contributing to high computational complexity when retrieving the demand. Pointing at this drawback of MDS-based PIR-PSI codes, we propose XOR-based PIR-PSI codes for a simple yet non-trivial setting of two non-colluding databases and two side information files at the user. While our codes offer substantial reduction in complexity when compared to MDS based codes, the code-rate marginally falls short of the capacity of the PIR-PSI setting. Nevertheless, we show that our code-rate is strictly higher than that of XOR-based codes for PIR with no side information, thereby implying that our codes can be useful when downloading multiple files in a sequential manner, instead of applying XOR-based PIR codes on each file.
In quantum private information retrieval (QPIR), a user retrieves a classical file from multiple servers by downloading quantum systems without revealing the identity of the file. The QPIR capacity is the maximal achievable ratio of the retrieved file size to the total download size. In this paper, the capacity of QPIR from MDS-coded and colluding servers is studied. Two classes of QPIR, called stabilizer QPIR and dimension squared QPIR induced from classical strongly linear PIR are defined, and the related QPIR capacities are derived. For the non-colluding case, the general QPIR capacity is derived when the number of files goes to infinity. The capacities of symmetric and non-symmetric QPIR with coded and colluding servers are proved to coincide, being double to their classical counterparts. A general statement on the converse bound for QPIR with coded and colluding servers is derived showing that the capacities of stabilizer QPIR and dimension squared QPIR induced from any class of PIR are upper bounded by twice the classical capacity of the respective PIR class. The proposed capacity-achieving scheme combines the star-product scheme by Freij-Hollanti et al. and the stabilizer QPIR scheme by Song et al. by employing (weakly) self-dual Reed--Solomon codes.
We investigate the problem of semantic private information retrieval (semantic PIR). In semantic PIR, a user retrieves a message out of $K$ independent messages stored in $N$ replicated and non-colluding databases without revealing the identity of the desired message to any individual database. The messages come with emph{different semantics}, i.e., the messages are allowed to have emph{non-uniform a priori probabilities} denoted by $(p_i>0,: i in [K])$, which are a proxy for their respective popularity of retrieval, and emph{arbitrary message sizes} $(L_i,: i in [K])$. This is a generalization of the classical private information retrieval (PIR) problem, where messages are assumed to have equal a priori probabilities and equal message sizes. We derive the semantic PIR capacity for general $K$, $N$. The results show that the semantic PIR capacity depends on the number of databases $N$, the number of messages $K$, the a priori probability distribution of messages $p_i$, and the message sizes $L_i$. We present two achievable semantic PIR schemes: The first one is a deterministic scheme which is based on message asymmetry. This scheme employs non-uniform subpacketization. The second scheme is probabilistic and is based on choosing one query set out of multiple options at random to retrieve the required message without the need for exponential subpacketization. We derive necessary and sufficient conditions for the semantic PIR capacity to exceed the classical PIR capacity with equal priors and sizes. Our results show that the semantic PIR capacity can be larger than the classical PIR capacity when longer messages have higher popularities. However, when messages are equal-length, the non-uniform priors cannot be exploited to improve the retrieval rate over the classical PIR capacity.
We introduce the problem of emph{timely} private information retrieval (PIR) from $N$ non-colluding and replicated servers. In this problem, a user desires to retrieve a message out of $M$ messages from the servers, whose contents are continuously updating. The retrieval process should be executed in a timely manner such that no information is leaked about the identity of the message. To assess the timeliness, we use the emph{age of information} (AoI) metric. Interestingly, the timely PIR problem reduces to an AoI minimization subject to PIR constraints under emph{asymmetric traffic}. We explicitly characterize the optimal tradeoff between the PIR rate and the AoI metric (peak AoI or average AoI) for the case of $N=2$, $M=3$. Further, we provide some structural insights on the general problem with arbitrary $N$, $M$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا