No Arabic abstract
A predicted type-II staggered band alignment with an approximately $1.4 eV$ valence band offset at the $ZnGeN_2/GaN$ heterointerface has inspired novel band-engineered $III-N/ZnGeN_2$ heterostructure-based device designs for applications in high performance optoelectronics. We report on the determination of the valence band offset between metalorganic chemical vapor deposition grown $(ZnGe)_{1-x}Ga_{2x}N_2$, for $x = 0$ and $0.06$, and $GaN$ using X-ray photoemission spectroscopy. The valence band of $ZnGeN_2$ was found to lie $1.45-1.65 eV$ above that of $GaN$. This result agrees well with the value predicted by first-principles density functional theory calculations using the local density approximation for the potential profile and quasiparticle self-consistent GW calculations of the band edge states relative to the potential. For $(ZnGe)_{0.94}Ga_{0.12}N_2$ the value was determined to be $1.29 eV$, $~10-20%$ lower than that of $ZnGeN_2$. The experimental determination of the large band offset between $ZnGeN_2$ and $GaN$ provides promising alternative solutions to address challenges faced with pure III-nitride-based structures and devices.
The valence band offsets (VBO) for the b{eta}-type A3B6 layered compounds depending on the thickness of the crystals have been investigated from the first principles, based on the density functional theory. To simulate the structure of a given thickness the periodic slab model was used. Two adjacent crystal slabs consisting of several layers were separated by a vacuum region of two-layer width. It is shown that at the crystal thickness more than 12 layers, photothreshold practically becomes independent on the thickness of the crystal.
The nitrogen substitution into the oxygen sites of several oxide materials leads to a reduction of the band gap to the visible light energy range, which makes these oxynitride semiconductors potential photocatalysts for efficient solar water splitting. Oxynitrides typically show a different crystal structure compare to the pristine oxide material. Since the band gap is correlated to both the chemical composition and the crystal structure, it is not trivial to distinguish what modifications of the electronic structure induced by the nitrogen substitution are related to compositional and/or structural effects. Here, X-ray emission and absorption spectroscopy is used to investigate the electronic structures of orthorhombic perovskite LaTiOxNy thin films in comparison with films of the pristine oxide LaTiOx with similar orthorhombic structure and cationic oxidation state. Experiment and theory show the expected upward shift in energy of the valence band maximum that reduces the band gap as a consequence of the nitrogen incorporation. But this study also shows that the conduction band minimum, typically considered almost unaffected by the nitrogen substitution, undergoes a significant downward shift in energy. For a rational design of oxynitride photocatalysts the observed changes of both the unoccupied and occupied electronic states have to be taken into account to justify the total band gap narrowing induced by the nitrogen incorporation.
The electronic structure of heterointerfaces play a pivotal role in their device functionality. Recently, highly crystalline ultrathin films of superconducting NbN have been integrated by molecular beam epitaxy with the semiconducting GaN. We use soft X-ray angle-resolved photoelectron spectroscopy to directly measure the momentum-resolved electronic band structures for both NbN and GaN constituents of this Schottky heterointerface, and determine their momentum-dependent interfacial band offset as well as the band-bending profile into GaN. We find, in particular, that the Fermi states in NbN are aligned against the band gap in GaN, which excludes any significant electronic cross-talk of the superconducting states in NbN through the interface to GaN. We support the experimental findings with first-principles calculations for bulk NbN and GaN. The Schottky barrier height obtained from photoemission is corroborated by electronic transport and optical measurements. The momentum-resolved understanding of electronic properties elucidated by the combined materials advances and experimental methods in our work opens up new possibilities in systems where interfacial states play a defining role.
h-BN and Ga2O3 are two promising semiconductor materials. However, the band alignment of the Ga2O3/h-BN heterojunction has not been identified, hindering device development. In this study, the heterojunction was prepared by metalorganic chemical vapor deposition and pulsed laser deposition. Transmission electron microscopy confirmed sharp heterointerface and revealed structural evolution as amorphous-Ga2O3 grew thicker on lattice mismatched h-BN. The valence and conduction band offsets were determined by high-resolution X-ray photoemission spectroscopy to be 1.75 and 3.35-3.65 eV, respectively, corresponding to a type-II heterojunction. The extremely large type-II band offsets along with indirect bandgap of Ga2O3 may be leveraged for exceptional electron confinement and storage.
The energy spectrum of the valence band in HgTe/Cd$_x$Hg$_{1-x}$Te quantum wells with a width $(8-20)$~nm has been studied experimentally by magnetotransport effects and theoretically in framework $4$-bands $kP$-method. Comparison of the Hall density with the density found from period of the Shubnikov-de Haas (SdH) oscillations clearly shows that the degeneracy of states of the top of the valence band is equal to 2 at the hole density $p< 5.5times 10^{11}$~cm$^{-2}$. Such degeneracy does not agree with the calculations of the spectrum performed within the framework of the $4$-bands $kP$-method for symmetric quantum wells. These calculations show that the top of the valence band consists of four spin-degenerate extremes located at $k eq 0$ (valleys) which gives the total degeneracy $K=8$. It is shown that taking into account the mixing of states at the interfaces leads to the removal of the spin degeneracy that reduces the degeneracy to $K=4$. Accounting for any additional asymmetry, for example, due to the difference in the mixing parameters at the interfaces, the different broadening of the boundaries of the well, etc, leads to reduction of the valleys degeneracy, making $K=2$. It is noteworthy that for our case two-fold degeneracy occurs due to degeneracy of two single-spin valleys. The hole effective mass ($m_h$) determined from analysis of the temperature dependence of the amplitude of the SdH oscillations show that $m_h$ is equal to $(0.25pm0.02),m_0$ and weakly increases with the hole density. Such a value of $m_h$ and its dependence on the hole density are in a good agreement with the calculated effective mass.