Do you want to publish a course? Click here

Interfacial Tension Modulation of Liquid Metal via Electrochemical Oxidation

66   0   0.0 ( 0 )
 Added by Minyung Song
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

This progress report summarizes recent studies of electrochemical oxidation to modulate the interfacial tension of gallium-based alloys. These alloys, which are liquid at ambient conditions, have the largest interfacial tension of any liquid at room temperature. The ability to modulate the tension offers the possibility to create forces that change the shape and position of the metal. It has been known since the late 1800s that electrocapillarity-the use of potential to modulate the electric double layer on the surface of metals in electrolyte-lowers the interfacial tension of liquid metal. Yet, this phenomenon can only achieve modest changes in interfacial tension since it is limited to potential windows that avoid reactions. A recent discovery suggests that reactions driven by the electrochemical oxidation of gallium alloys cause the interfacial tension to decrease from ~500 mN/m at 0 V to ~0 mN/m at ~0.8 V, a change in tension that goes well beyond what is possible via conventional electrocapillarity or surfactants. The changes in tension are reversible; reductive potentials return the metal back to a state of high interfacial tension. This report aims to summarize key work and introduce beginners to this field by including electrochemistry basics while addressing misconceptions. We discuss applications that utilize modulations in interfacial tension of liquid metal and conclude with remaining opportunities and challenges that need further investigation.

rate research

Read More

We consider interactions between surface and interfacial waves in the two layer system. Our approach is based on the Hamiltonian structure of the equations of motion, and includes the general procedure for diagonalization of the quadratic part of the Hamiltonian. Such diagonalization allows us to derive the interaction crossection between surface and interfacial waves and to derive the coupled kinetic equations describing spectral energy transfers in this system. Our kinetic equation allows resonant and near resonant interactions. We find that the energy transfers are dominated by the class III resonances of cite{Alam}. We apply our formalism to calculate the rate of growth for interfacial waves for different values of the wind velocity. Using our kinetic equation, we also consider the energy transfer from the wind generated surface waves to interfacial waves for the case when the spectrum of the surface waves is given by the JONSWAP spectrum and interfacial waves are initially absent. We find that such energy transfer can occur along a timescale of hours; there is a range of wind speeds for the most effective energy transfer at approximately the wind speed corresponding to white capping of the sea. Furthermore, interfacial waves oblique to the direction of the wind are also generated.
The influence of miscibility and liquid wettability during droplet impact onto thin wall films is investigated experimentally. Despite similar liquid properties and impact conditions, differences in the splashing limit, the crown extension and the duration of the ascending phase are observed. These differences are related to the interfacial tension of the droplet/wall-film liquid pairs, which is linked to their miscibility and wettability. More precisely, by calculating the crown surface energy, we show that the energy stored in the interface between droplet and wall-film (if any) is not negligible and leads to smaller crown extensions and the need of more kinetic energy to initiate splashing. Similarly, by calculating a modified capillary time taking into account all surface and interfacial tensions, we show that the interfacial tension acts as a non-negligible recoiling force, which reduces the duration of the ascending phase. The dynamics of this ascending phase is well captured for different wall-film thicknesses if accounting for the variations of the liquid masses in movement. Overall, droplet/wall-film interactions can be seen as inertio-capillary systems where the interfacial tension between droplet and wall film plays a significant role in the storage of energy and in the crown kinetics during the impact process. Besides, this analysis highlights that viscous losses have already a significant effect during the crown extension phase, by dissipating almost half of the initial energies for droplet impact onto thin wall films, and most likely by influencing the capillary time scale through damping.
A physics-informed neural network (PINN), which has been recently proposed by Raissi et al [J. Comp. Phys. 378, pp. 686-707 (2019)], is applied to the partial differential equation (PDE) of liquid film flows. The PDE considered is the time evolution of the thickness distribution $h(x,t)$ owing to the Laplace pressure, which involves 4th-order spatial derivative and 4th-order nonlinear term. Even for such a PDE, it is confirmed that the PINN can predict the solutions with sufficient accuracy. Nevertheless, some improvements are needed in training convergence and accuracy of the solutions. The precision of floating-point numbers is a critical issue for the present PDE. When the calculation is executed with a single precision floating-point number, the optimization is terminated due to the loss of significant digits. Calculation of the automatic differentiation (AD) dominates the computational time required for training, and becomes exponentially longer with increasing order of derivatives. By splitting the original 4th-order one-variable PDE into 2nd-order two-variable PDEs, the computational time for each training iteration is greatly reduced. The sampling density of training data also significantly affects training convergence. For the problem considered in this study, mproved convergence was obtained by allowing the sampling density of training data to be greater in earlier time ranges, where the rapid diffusion of the thickness occurs.
88 - Nikolay M. Zubarev 2004
The formation dynamics is studied for a singular profile of a surface of an ideal conducting fluid in an electric field. Self-similar solutions of electrohydrodynamic equations describing the fundamental process of formation of surface conic cusps with angles close to the Taylor cone angle 98.6 are obtained. The behavior of physical quantities (field strength, fluid velocity, surface curvature) near the singularity is established.
It was recently claimed by Bhagat et al. (J. Fluid Mech. vol. 851 (2018), R5) that the scientific literature on the circular hydraulic jump in a thin liquid film is flawed by improper treatment and severe underestimation of the influence of surface tension. Bhagat {em et al.} use an energy equation with a new surface energy term that is introduced without reference, and they conclude that the location of the hydraulic jump is determined by surface tension alone. We show that this approach is incorrect and derive a corrected energy equation. Proper treatment of surface tension in thin film flows is of general interest beyond hydraulic jumps, and we show that the effect of surface tension is fully contained in the Laplace pressure due to the curvature of the surface. Following the same approach as Bhagat et al., i.e., keeping only the first derivative of the surface velocity, the influence of surface tension is, for thin films, much smaller than claimed by them. We further describe the influence of viscosity in thin film flows, and we conclude by discussing the distinction between time-dependent and stationary hydraulic jumps.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا