No Arabic abstract
In this study, we focus on Langmuir turbulence in the deep ocean with the presence of a large macroalgal farm using a Large Eddy Simulation method. The wave-current interactions are modelled by solving the wave-averaged equations. The hydrodynamic process over the farm is found to drive a persistent flow pattern similar to Langmuir circulations but is locked in space across the farm. These secondary circulations are generated because the cross-stream shear produced by the rows of canopy elements leads to a steady vertical vorticity field, which is then rotated to the downstream direction under the effect of vortex force. Since the driving mechanism is similar to the CraikLeibovich type 2 instability theory, these secondary circulations are also termed as attached Langmuir circulations. We then apply a triple decomposition on the flow field to unveil the underlying kinematics and energy transfer between the mean flow, the secondary flow resulting from the farm drag, and the transient eddies. Flow visualizations and statistics suggest that the attached Langmuir circulations result from the adjustment of the upper ocean mixed layer to the macroalgal farm, and they will weaken (if not disappear) when the flow reaches an equilibrium state within the farm. The tripledecomposed energy budgets reveal that the energy of the secondary flow is transferred from the mean flow under the action of canopy drag, while the transient eddies feed on wave energy transferred by the Stokes drift and energy conversion from the secondary flow.
The large-scale structures in the ocean and the atmosphere are in geostrophic balance, and a conduit must be found to channel the energy to the small scales where it can be dissipated. In turbulence this takes the form of an energy cascade, whereas one possible mechanism in a balanced flow at large scales is through the formation of fronts, a common occurrence in geophysical dynamics. We show in this paper that an iconic configuration in laboratory and numerical experiments for the study of turbulence, that of the Taylor-Green or von Karman swirling flow, can be suitably adapted to the case of fluids with large aspect ratios, leading to the creation of an imposed large-scale vertical shear. To this effect we use direct numerical simulations of the Boussinesq equations without net rotation and with no small-scale modeling, and with this idealized Taylor-Green set-up. Various grid spacings are used, up to $2048^2times 256$ spatial points. The grids are always isotropic, with box aspect ratios of either $1:4$ or $1:8$. We find that when shear and stratification are comparable, the imposed shear layer resulting from the forcing leads to the formation of multiple fronts and filaments which destabilize and further evolve into a turbulent flow in the bulk, with a sizable amount of dissipation and mixing, and with a cycle of front creation, instability, and development of turbulence. The results depend on the vertical length scales for shear and for stratification, with stronger large-scale gradients being generated when the two length scales are comparable.
Recent numerical simulations showed that the mean flow is generated in inhomogeneous turbulence of an incompressible fluid accompanied with helicity and system rotation. In order to investigate the mechanism of this phenomenon, we carry out a numerical simulation of inhomogeneous turbulence in a rotating system. In the simulation, an external force is applied to inject inhomogeneous turbulent helicity and the rotation axis is taken to be perpendicular to the inhomogeneous direction. No mean velocity is set in the initial condition of the simulation. The simulation results show that only in the case with both the helical forcing and the system rotation, the mean flow directed to the rotation axis is generated and sustained. We investigate the physical origin of this flow-generation phenomenon by considering the budget of the Reynolds-stress transport equation. It is found that the pressure diffusion term has a large contribution in the Reynolds stress equation and supports the generated mean flow. It is shown that a model expression for the pressure diffusion can be expressed by the turbulent helicity gradient coupled with the angular velocity of the system rotation. This implies that inhomogeneous helicity can play a significant role for the generation of the large-scale velocity distribution in incompressible turbulent flows.
We investigate a mechanism to manipulate wall-bounded flows whereby wave-like undulations of the wall topography drives the creation of bespoke longitudinal vortices. A resonant interaction between the ambient vorticity of the undisturbed shear flow and the undulation of streamlines enforced by the wall topography serves to slightly rotate the spanwise vorticity of the mean flow into the streamwise direction, creating a swirling motion, in the form of regular streamwise rolls. The process is kinematic and essentially identical to the `direct drive CL1 mechanism for Langmuir circulation (LC) proposed by Craik (1970). Boundary layers are modelled by selecting suitable primary flow profiles. A simple, easily integrable expression for the cross-plane stream function is found in two asymptotic regimes: the resonant onset of the essentially inviscid instability at early times, and the fully developed steady state viscous flow. Linear-order solutions for flow over undulating boundaries are obtained, fully analytical in the special case of a power-law profile. These solutions allow us to quickly map out the circulation response to boundary design parameters. The study is supplemented with direct numerical simulations which verify the manifestation of boundary induced Langmuir vortices in laminar flows with no-slip boundaries. Simulations show good qualitative agreement with theory. Quantitatively, the comparisons rest on a displacement length closure parameter adopted in the perturbation theory. While wall-driven LC appear to become unstable in turbulent flows, we propose that the mechanism can promote swirling motion in boundary layers, a flow feature which has been reported to reduce drag in some situations.
The flow speed-up generated by windbreaks can be used to increase the power production of wind turbines. However, due to the increased drag imposed by the windbreaks, their use in large wind turbine arrays has been questioned. We use large eddy simulations to show that windbreaks can increase the power production of large wind farms. A crucial finding is that windbreaks in a wind farm should be much lower than for a single turbine case. In fact, the optimal windbreak for an isolated turbine can reduce wind farm performance. The optimal windbreak height in a wind farm namely depends on the right balance between flow speed-up over the windbreak and the drag imposed by all windbreaks in the farm. The increased performance is a result of the favorable total pressure flux created by the windbreaks.
We investigate the dynamics of cohesive particles in homogeneous isotropic turbulence, based on one-way coupled simulations that include Stokes drag, lubrication, cohesive and direct contact forces. We observe a transient flocculation phase characterized by a growing average floc size, followed by a statistically steady equilibrium phase. We analyze the temporal evolution of floc size and shape due to aggregation, breakage, and deformation. Larger turbulent shear and weaker cohesive forces yield elongated flocs that are smaller in size. Flocculation proceeds most rapidly when the fluid and particle time scales are balanced and a suitably defined Stokes number is textit{O}(1). During the transient stage, cohesive forces of intermediate strength produce flocs of the largest size, as they are strong enough to cause aggregation, but not so strong as to pull the floc into a compact shape. Small Stokes numbers and weak turbulence delay the onset of the equilibrium stage. During equilibrium, stronger cohesive forces yield flocs of larger size. The equilibrium floc size distribution exhibits a preferred size that depends on the cohesive number. We observe that flocs are generally elongated by turbulent stresses before breakage. Flocs of size close to the Kolmogorov length scale preferentially align themselves with the intermediate strain direction and the vorticity vector. Flocs of smaller size tend to align themselves with the extensional strain direction. More generally, flocs are aligned with the strongest Lagrangian stretching direction. The Kolmogorov scale is seen to limit floc growth. We propose a new flocculation model with a variable fractal dimension that predicts the temporal evolution of the floc size and shape.