Deposition of perovskite thin films by antisolvent engineering is one of the most common methods employed in perovskite photovoltaics research. Herein, we report on a general method that allows the fabrication of highly efficient perovskite solar cells by any antisolvent via the manipulation of the antisolvent application rate. Through a detailed structural, compositional and microstructural characterization of perovskite layers fabricated by 14 different antisolvents, we identify two key factors that influence the quality of the perovskite active layer: the solubility of the organic precursors in the antisolvent and its miscibility with the host solvent(s) of the perovskite precursor solution. Depending on these two factors, each antisolvent can be utilized to produce high performance devices reaching power conversion efficiencies (PCEs) that exceed 21%. Moreover, we demonstrate that by employing the optimal antisolvent application procedure, highly efficient solar cells can be fabricated from a broad range of precursor stoichiometries, with either a significant excess or deficiency of organic iodides.