No Arabic abstract
In the standard effective V - A theory of low-energy weak interactions (i.e. in the Standard Model (SM)) we analyze the structure of the correlation coefficients S(E_e) and U(E_e), where E_e is the electron energy. These correlation coefficients were introduced to the electron-energy and angular distribution of the neutron beta decay by Ebel and Feldman ( Nucl. Phys. 4, 213 (1957)) in addition to the set of correlation coefficients proposed by Jackson et al. (Phys. Rev. 106, 517 (1957)). The correlation coefficients $S(E_e)$ and $U(E_e)$ are induced by simultaneous correlations of the neutron and electron spins and electron and antineutrino 3-momenta. These correlation structures do no violate discrete P, C and T symmetries. We analyze the contributions of the radiative corrections of order O(alpha/pi), taken to leading order in the large nucleon mass m_N expansion, and corrections of order O(E_e/m_N), caused by weak magnetism and proton recoil. In addition to the obtained SM corrections we calculate the contributions of interactions beyond the SM (BSM contributions) in terms of the phenomenological coupling constants of BSM interactions by Jackson et al. (Phys. Rev. 106, 517 (1957)) and the second class currents by Weinberg (Phys. Rev. 112, 1375 (1958)).
We analyze the correlation coefficient T(E_e), which was introduced by Ebel and Feldman (Nucl. Phys. 4, 213 (1957)). The correlation coefficient T(E_e) is induced by the correlations of the neutron spin with the antineutrino 3-momentum and the electron spin with the electron 3-momentum. Such a correlation structure is invariant under discrete P, C and T symmetries. The correlation coefficient T(E_e), calculated to leading order in the large nucleon mass m_N expansion, is equal to T(E_e) = - 2 g_A(1 + g_A)/(1 + 3 g^2_A) = - B_0, i.e. of order |T(E_e)| ~ 1, where $g_A$ is the axial coupling constant. Within the Standard Model (SM) we describe the correlation coefficient $T(E_e)$ at the level of 10^{-3} by taking into the radiative corrections of order O(alpha/pi) or the outer model-independent radiative corrections, where alpha is the fine-structure constant, and the corrections of order O(E_e/m_N), caused by weak magnetism and proton recoil. We calculate also the contributions of interactions beyond the SM, including the contributions of the second class currents.
We calculate the radiative corrections of order O(alpha E_e/m_N) as next-to-leading order corrections in the large nucleon mass expansion to Sirlins radiative corrections of order O(alpha/pi) to the neutron lifetime. The calculation is carried out within a quantum field theoretic model of strong low-energy pion--nucleon interactions described by the linear sigma-model (LsM) with chiral SU(2)xSU(2) symmetry and electroweak hadron-hadron, hadron-lepton and lepton-lepton interactions for the electron-lepton family with SU(2)_L x U(1)_Y symmetry of the Standard Electroweak Model (SEM). Such a quantum field theoretic model is some kind a hadronized version of the Standard Model (SM). From a gauge invariant set of the Feynman diagrams with one-photon exchanges we reproduce Sirlins radiative corrections of order O(alpha/pi), calculated to leading order in the large nucleon mass expansion, and calculate next-to-leading corrections of order O(alpha E_e/m_N). This confirms Sirlins confidence level of the radiative corrections O(alpha E_e/m_N). The contributions of the LsM are taken in the limit of the infinite mass of the scalar isoscalar sigma-meson. In such a limit the LsM reproduces the results of the current algebra (Weinberg, Phys. Rev. Lett. {bf 18}, 188 (1967)) in the form of effective chiral Lagrangians of pion-nucleon interactions with non--linear realization of chiral SU(2)xSU(2) symmetry. In such a limit the L$sigma$M is also equivalent to Gasser-Leutwylers chiral quantum field theory or chiral perturbation theory (ChPT) with chiral SU(2)xSU(2)symmetry and the exponential parametrization of a pion-field (Ecker, Prog. Part. Nucl. Phys. {bf 35}, 1 (1995)).
As we have pointed out in (arXiv:1806.10107 [hep-ph]), the existence of neutron dark matter decay modes n -> chi + anything, where chi is a dark matter fermion, for the solution of the neutron lifetime problem changes priorities and demands to describe the neutron lifetime tau_n = 888.0(2.0)s, measured in beam experiments and defined by the decay modes n -> p + anything, in the Standard Model (SM). The latter requires the axial coupling constant lambda to be equal to lambda = - 1.2690 (arXiv:1806.10107 [hep-ph]). Since such an axial coupling constant is excluded by experimental data reported by the PERKEO II and UCNA Collaborations, the neutron lifetime tau_n = 888.0(2.0)s can be explained only by virtue of interactions beyond the SM, namely, by the Fierz interference term of order b ~ - 10^{-2} dependent on scalar and tensor coupling constants. We give a complete analysis of all correlation coefficients of the neutron beta decays with polarized neutron, taking into account the contributions of scalar and tensor interactions beyond the SM with the Fierz interference term b ~ - 10^{-2}. We show that the obtained results agree well with the contemporary experimental data that does not prevent the neutron with the rate of the decay modes n -> p + anything, measured in beam experiments, to have dark matter decay modes n -> chi + anything.
We investigate the contributions of the hadronic structure of the neutron to radiative $O(alpha E_e/m_N)$ corrections (or the inner $O(alpha E_e/m_N)$ RC) to the neutron beta decay, where $alpha$, $E_e$ and $m_N$ are the fine-structure constant, the electron energy and the nucleon mass, respectively. We perform the calculation within the effective quantum field theory of strong low-energy pion-nucleon interactions described by the linear $sigma$-model with chiral $SU(2) times SU(2)$ symmetry and electroweak hadron-hadron, hadron-lepton and lepton-lepton interactions for the electron-lepton family with $SU(2)_L times U(1)_Y$ symmetry of the Standard Electroweak Theory (Ivanov et al., Phys. Rev. D99, 093006 (2019)). We show that after renormalization, carried out in accordance with Sirlins prescription (Sirlin, Phys. Rev. 164, 1767 (1967)), the inner $O(alpha E_e/m_N)$ RC are of the order of a few parts of $10^{-5} - 10^{-4}$. This agrees well with the results obtained in (Ivanov et al., Phys. Rev. D99, 093006 (2019)).
This paper is addressed to the analysis of the set of observables of the bound-state beta-decay, which can be used for the experimental investigation of contributions of i) interactions beyond the Standard Model (SM) and of ii) the left-handed polarisation state of antineutrinos. For this aim we calculate the branching ratio, probabilities and angular distributions of probabilities of hydrogen in the hyperfine states and of the proton-electron pair in different spinorial states, induced by left-handed and right-handed hadronic and leptonic currents. The branching ratio of the bound-state beta-decay is calculated by taking into account radiative corrections. We show that the probabilities of the bound-state beta-decay can be good observables for experimental investigations of contributions of interactions beyond the SM, whereas the angular distributions of probabilities are good observables for experimental searches of contributions of the left-handed polarisation state of antineutrinos.