No Arabic abstract
Motivated by the recent experimental demonstrations of quantum supremacy, proving the hardness of the output of random quantum circuits is an imperative near term goal. We prove under the complexity theoretical assumption of the non-collapse of the polynomial hierarchy that approximating the output probabilities of random quantum circuits to within $exp(-Omega(mlog m))$ additive error is hard for any classical computer, where $m$ is the number of gates in the quantum computation. More precisely, we show that the above problem is $#mathsf{P}$-hard under $mathsf{BPP}^{mathsf{NP}}$ reduction. In the recent experiments, the quantum circuit has $n$-qubits and the architecture is a two-dimensional grid of size $sqrt{n}timessqrt{n}$. Indeed for constant depth circuits approximating the output probabilities to within $2^{-Omega(nlog{n})}$ is hard. For circuits of depth $log{n}$ or $sqrt{n}$ for which the anti-concentration property holds, approximating the output probabilities to within $2^{-Omega(nlog^2{n})}$ and $2^{-Omega(n^{3/2}log n)}$ is hard respectively. We made an effort to find the best proofs and proved these results from first principles, which do not use the standard techniques such as the Berlekamp--Welch algorithm, the usual Paturis lemma, and Rakhmanovs result.
One-parameter interpolations between any two unitary matrices (e.g., quantum gates) $U_1$ and $U_2$ along efficient paths contained in the unitary group are constructed. Motivated by applications, we propose the continuous unitary path $U(theta)$ obtained from the QR-factorization [ U(theta)R(theta)=(1-theta)A+theta B, ] where $U_1 R_1=A$ and $U_2 R_2=B$ are the QR-factorizations of $A$ and $B$, and $U(theta)$ is a unitary for all $theta$ with $U(0)=U_1$ and $U(1)=U_2$. The QR-algorithm is modified to, instead of $U(theta)$, output a matrix whose columns are proportional to the corresponding columns of $U(theta)$ and whose entries are polynomial or rational functions of $theta$. By an extension of the Berlekamp-Welch algorithm we show that rational functions can be efficiently and exactly interpolated with respect to $theta$. We then construct probability distributions over unitaries that are arbitrarily close to the Haar measure. Demonstration of computational advantages of NISQ over classical computers is an imperative near-term goal, especially with the exuberant experimental frontier in academia and industry (e.g., IBM and Google). A candidate for quantum computational supremacy is Random Circuit Sampling (RCS), which is the task of sampling from the output distribution of a random circuit. The aforementioned mathematical results provide a new way of scrambling quantum circuits and are applied to prove that exact RCS is $#P$-Hard on average, which is a simpler alternative to Bouland et als. (Dis)Proving the quantum supremacy conjecture requires approximate average case hardness; this remains an open problem for all quantum supremacy proposals.
Quantum computing is of high interest because it promises to perform at least some kinds of computations much faster than classical computers. Arute et al. 2019 (informally, the Google Quantum Team) report the results of experiments that purport to demonstrate quantum supremacy -- the claim that the performance of some quantum computers is better than that of classical computers on some problems. Do these results close the debate over quantum supremacy? We argue that they do not. We provide an overview of the Google Quantum Teams experiments, then identify some open questions in the quest to demonstrate quantum supremacy.
As Moores law reaches its limits, quantum computers are emerging with the promise of dramatically outperforming classical computers. We have witnessed the advent of quantum processors with over $50$ quantum bits (qubits), which are expected to be beyond the reach of classical simulation. Quantum supremacy is the event at which the old Extended Church-Turing Thesis is overturned: A quantum computer performs a task that is practically impossible for any classical (super)computer. The demonstration requires both a solid theoretical guarantee and an experimental realization. The lead candidate is Random Circuit Sampling (RCS), which is the task of sampling from the output distribution of random quantum circuits. Google recently announced a $53-$qubit experimental demonstration of RCS. Soon after, classical algorithms appeared that challenge the supremacy of random circuits by estimating their outputs. How hard is it to classically simulate the output of random quantum circuits? We prove that estimating the output probabilities of random quantum circuits is formidably hard ($#P$-Hard) for any classical computer. This makes RCS the strongest candidate for demonstrating quantum supremacy relative to all other proposals. The robustness to the estimation error that we prove may serve as a new hardness criterion for the performance of classical algorithms. To achieve this, we introduce the Cayley path interpolation between any two gates of a quantum computation and convolve recent advances in quantum complexity and information with probability and random matrices. Furthermore, we apply algebraic geometry to generalize the well-known Berlekamp-Welch algorithm that is widely used in coding theory and cryptography. Our results imply that there is an exponential hardness barrier for the classical simulation of most quantum circuits.
To ensure a long-term quantum computational advantage, the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares. Here, we demonstrate a superconducting quantum computing systems textit{Zuchongzhi} 2.1, which has 66 qubits in a two-dimensional array in a tunable coupler architecture. The readout fidelity of textit{Zuchongzhi} 2.1 is considerably improved to an average of 97.74%. The more powerful quantum processor enables us to achieve larger-scale random quantum circuit sampling, with a system scale of up to 60 qubits and 24 cycles. The achieved sampling task is about 6 orders of magnitude more difficult than that of Sycamore [Nature textbf{574}, 505 (2019)] in the classic simulation, and 3 orders of magnitude more difficult than the sampling task on textit{Zuchongzhi} 2.0 [arXiv:2106.14734 (2021)]. The time consumption of classically simulating random circuit sampling experiment using state-of-the-art classical algorithm and supercomputer is extended to tens of thousands of years (about $4.8times 10^4$ years), while textit{Zuchongzhi} 2.1 only takes about 4.2 hours, thereby significantly enhancing the quantum computational advantage.
Photonics is a promising platform for demonstrating quantum computational supremacy (QCS) by convincingly outperforming the most powerful classical supercomputers on a well-defined computational task. Despite this promise, existing photonics proposals and demonstrations face significant hurdles. Experimentally, current implementations of Gaussian boson sampling lack programmability or have prohibitive loss rates. Theoretically, there is a comparative lack of rigorous evidence for the classical hardness of GBS. In this work, we make significant progress in improving both the theoretical evidence and experimental prospects. On the theory side, we provide strong evidence for the hardness of Gaussian boson sampling, placing it on par with the strongest theoretical proposals for QCS. On the experimental side, we propose a new QCS architecture, high-dimensional Gaussian boson sampling, which is programmable and can be implemented with low loss rates using few optical components. We show that particular classical algorithms for simulating GBS are vastly outperformed by high-dimensional Gaussian boson sampling experiments at modest system sizes. This work thus opens the path to demonstrating QCS with programmable photonic processors.