Do you want to publish a course? Click here

Effect of stress on cardiorespiratory synchronization of Ironmen athletes

93   0   0.0 ( 0 )
 Added by Sergiy Shelyag
 Publication date 2021
  fields Biology
and research's language is English




Ask ChatGPT about the research

The aim of this paper is to investigate the cardiorespiratory synchronization in athletes subjected to extreme physical stress combined with a cognitive stress tasks. ECG and respiration were measured in 14 athletes before and after the Ironmen competition. Stroop test was applied between the measurements before and after the Ironmen competition to induce cognitive stress. Synchrogram and empirical mode decomposition analysis were used for the first time to investigate the effects of physical stress, induced by the Ironmen competition, on the phase synchronization of the cardiac and respiratory systems of Ironmen athletes before and after the competition. A cognitive stress task (Stroop test) was performed both pre- and post-Ironman event in order to prevent the athletes from cognitively controlling their breathing rates. Our analysis showed that cardiorespiratory synchronization increased post-Ironman race compared to pre-Ironman. The results suggest that the amount of stress the athletes are recovering from post-competition is greater than the effects of the Stroop test. This indicates that the recovery phase after the competition is more important for restoring and maintaining homeostasis, which could be another reason for stronger synchronization.



rate research

Read More

In the last decades, the interest to understand the connection between brain and body has grown notably. For example, in psychoneuroimmunology many studies associate stress, arising from many different sources and situations, to changes in the immune system from the medical or immunological point of view as well as from the biochemical one. In this paper we identify important behaviours of this interplay between the immune system and stress from medical studies and seek to represent them qualitatively in a paradigmatic, yet simple, mathematical model. To that end we develop a differential equation model with two equations for infection level and immune system, which integrates the effects of stress as an additional parameter. We are able to reproduce a stable healthy state for little stress, an oscillatory state between healthy and infected states for high stress, and a burn-out or stable sick state for extremely high stress. The mechanism between the different dynamics is controlled by two saddle-node in cycle (SNIC) bifurcations. Furthermore, our model is able to capture an induced infection upon dropping from moderate to low stress, and it predicts increasing infection periods upon increasing before eventually reaching a burn-out state.
In the course of animal development, the shape of tissue emerges in part from mechanical and biochemical interactions between cells. Measuring stress in tissue is essential for studying morphogenesis and its physical constraints. Experimental measurements of stress reported thus far have been invasive, indirect, or local. One theoretical approach is force inference from cell shapes and connectivity, which is non-invasive, can provide a space-time map of stress and relies on prefactors. Here, to validate force- inference methods, we performed a comparative study of them. Three force-inference methods, which differ in their approach of treating indefiniteness in an inverse problem between cell shapes and forces, were tested by using two artificial and two experimental data sets. Our results using different datasets consistently indicate that our Bayesian force inference, by which cell-junction tensions and cell pressures are simultaneously estimated, performs best in terms of accuracy and robustness. Moreover, by measuring the stress anisotropy and relaxation, we cross-validated the force inference and the global annular ablation of tissue, each of which relies on different prefactors. A practical choice of force-inference methods in distinct systems of interest is discussed.
In the pregnant mother and her fetus, chronic prenatal stress results in entrainment of the fetal heartbeat by the maternal heartbeat, quantified by the fetal stress index (FSI). Deep learning (DL) is capable of pattern detection in complex medical data with high accuracy in noisy real-life environments, but little is known about DLs utility in non-invasive biometric monitoring during pregnancy. A recently established self-supervised learning (SSL) approach to DL provides emotional recognition from electrocardiogram (ECG). We hypothesized that SSL will identify chronically stressed mother-fetus dyads from the raw maternal abdominal electrocardiograms (aECG), containing fetal and maternal ECG. Chronically stressed mothers and controls matched at enrolment at 32 weeks of gestation were studied. We validated the chronic stress exposure by psychological inventory, maternal hair cortisol and FSI. We tested two variants of SSL architecture, one trained on the generic ECG features for emotional recognition obtained from public datasets and another transfer-learned on a subset of our data. Our DL models accurately detect the chronic stress exposure group (AUROC=0.982+/-0.002), the individual psychological stress score (R2=0.943+/-0.009) and FSI at 34 weeks of gestation (R2=0.946+/-0.013), as well as the maternal hair cortisol at birth reflecting chronic stress exposure (0.931+/-0.006). The best performance was achieved with the DL model trained on the public dataset and using maternal ECG alone. The present DL approach provides a novel source of physiological insights into complex multi-modal relationships between different regulatory systems exposed to chronic stress. The final DL model can be deployed in low-cost regular ECG biosensors as a simple, ubiquitous early stress detection and monitoring tool during pregnancy. This discovery should enable early behavioral interventions.
For several decades optical tweezers have proven to be an invaluable tool in the study and analysis of a myriad biological responses and applications. However, as every tool, it can have undesirable or damaging effects upon the very sample it is helping to study. In this review the main negative effects of optical tweezers upon biostructures and living systems will be presented. Three are the main areas on which the review will focus: linear optical excitation within the tweezers, non-linear photonic effects, and thermal load upon the sampled volume. Additional information is provided on negative mechanical effects of optical traps on biological structures. Strategies to avoid or, in the least, minimize these negative effects will be introduced. Finally, all these effects, undesirable for the most, can have positive applications under the right conditions. Some hints in this direction will also be discussed.
What is the influence of chronic maternal prenatal stress (PS) on fetal iron homeostasis? In a prospective case-control study in 164 pregnant women, we show that cord blood transferrin saturation is lower in male stressed neonates. The total effect of PS exposure on fetal ferritin revealed a decrease of 15.4% compared with controls. Electrocardiogram-based Fetal Stress Index (FSI) identified affected fetuses non-invasively during the third trimester of gestation. FSI-based timely detection of fetuses affected by PS can support early individualized iron supplementation and neurodevelopmental follow-up to prevent long-term sequelae due to PS-exacerbated impairment of the iron homeostasis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا