A model-independent framework for determining finite-volume effects of spatially nonlocal operators


Abstract in English

We present a model-independent framework to determine finite-volume corrections of matrix elements of spatially-separated current-current operators. We define these matrix elements in terms of Compton-like amplitudes, i.e. amplitudes coupling single-particle states via two current insertions. We show that the infrared behavior of these matrix elements is dominated by the single-particle pole, which is approximated by the elastic form factors of the lowest-lying hadron. Therefore, given lattice data on the relevant elastic form factors, the finite-volume effects can be estimated non-perturbatively and without recourse to effective field theories. For illustration purposes, we investigate the implications of the proposed formalism for a class of scalar theories in two and four dimensions.

Download