Do you want to publish a course? Click here

Speech Emotion Recognition with Multiscale Area Attention and Data Augmentation

72   0   0.0 ( 0 )
 Added by Mingke Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In Speech Emotion Recognition (SER), emotional characteristics often appear in diverse forms of energy patterns in spectrograms. Typical attention neural network classifiers of SER are usually optimized on a fixed attention granularity. In this paper, we apply multiscale area attention in a deep convolutional neural network to attend emotional characteristics with varied granularities and therefore the classifier can benefit from an ensemble of attentions with different scales. To deal with data sparsity, we conduct data augmentation with vocal tract length perturbation (VTLP) to improve the generalization capability of the classifier. Experiments are carried out on the Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset. We achieved 79.34% weighted accuracy (WA) and 77.54% unweighted accuracy (UA), which, to the best of our knowledge, is the state of the art on this dataset.



rate research

Read More

We investigate the performance of features that can capture nonlinear recurrence dynamics embedded in the speech signal for the task of Speech Emotion Recognition (SER). Reconstruction of the phase space of each speech frame and the computation of its respective Recurrence Plot (RP) reveals complex structures which can be measured by performing Recurrence Quantification Analysis (RQA). These measures are aggregated by using statistical functionals over segment and utterance periods. We report SER results for the proposed feature set on three databases using different classification methods. When fusing the proposed features with traditional feature sets, we show an improvement in unweighted accuracy of up to 5.7% and 10.7% on Speaker-Dependent (SD) and Speaker-Independent (SI) SER tasks, respectively, over the baseline. Following a segment-based approach we demonstrate state-of-the-art performance on IEMOCAP using a Bidirectional Recurrent Neural Network.
In this manuscript, the topic of multi-corpus Speech Emotion Recognition (SER) is approached from a deep transfer learning perspective. A large corpus of emotional speech data, EmoSet, is assembled from a number of existing SER corpora. In total, EmoSet contains 84181 audio recordings from 26 SER corpora with a total duration of over 65 hours. The corpus is then utilised to create a novel framework for multi-corpus speech emotion recognition, namely EmoNet. A combination of a deep ResNet architecture and residual adapters is transferred from the field of multi-domain visual recognition to multi-corpus SER on EmoSet. Compared against two suitable baselines and more traditional training and transfer settings for the ResNet, the residual adapter approach enables parameter efficient training of a multi-domain SER model on all 26 corpora. A shared model with only $3.5$ times the number of parameters of a model trained on a single database leads to increased performance for 21 of the 26 corpora in EmoSet. Measured by McNemars test, these improvements are further significant for ten datasets at $p<0.05$ while there are just two corpora that see only significant decreases across the residual adapter transfer experiments. Finally, we make our EmoNet framework publicly available for users and developers at https://github.com/EIHW/EmoNet. EmoNet provides an extensive command line interface which is comprehensively documented and can be used in a variety of multi-corpus transfer learning settings.
The majority of existing speech emotion recognition models are trained and evaluated on a single corpus and a single language setting. These systems do not perform as well when applied in a cross-corpus and cross-language scenario. This paper presents results for speech emotion recognition for 4 languages in both single corpus and cross corpus setting. Additionally, since multi-task learning (MTL) with gender, naturalness and arousal as auxiliary tasks has shown to enhance the generalisation capabilities of the emotion models, this paper introduces language ID as another auxiliary task in MTL framework to explore the role of spoken language on emotion recognition which has not been studied yet.
Emotion recognition as a key component of high-stake downstream applications has been shown to be effective, such as classroom engagement or mental health assessments. These systems are generally trained on small datasets collected in single laboratory environments, and hence falter when tested on data that has different noise characteristics. Multiple noise-based data augmentation approaches have been proposed to counteract this challenge in other speech domains. But, unlike speech recognition and speaker verification, in emotion recognition, noise-based data augmentation may change the underlying label of the original emotional sample. In this work, we generate realistic noisy samples of a well known emotion dataset (IEMOCAP) using multiple categories of environmental and synthetic noise. We evaluate how both human and machine emotion perception changes when noise is introduced. We find that some commonly used augmentation techniques for emotion recognition significantly change human perception, which may lead to unreliable evaluation metrics such as evaluating efficiency of adversarial attack. We also find that the trained state-of-the-art emotion recognition models fail to classify unseen noise-augmented samples, even when trained on noise augmented datasets. This finding demonstrates the brittleness of these systems in real-world conditions. We propose a set of recommendations for noise-based augmentation of emotion datasets and for how to deploy these emotion recognition systems in the wild.
Speech emotion recognition is a challenging and important research topic that plays a critical role in human-computer interaction. Multimodal inputs can improve the performance as more emotional information is used for recognition. However, existing studies learnt all the information in the sample while only a small portion of it is about emotion. Moreover, under the multimodal framework, the interaction between different modalities is shallow and insufficient. In this paper, a keysparse Transformer is proposed for efficient SER by only focusing on emotion related information. Furthermore, a cascaded cross-attention block, which is specially designed for multimodal framework, is introduced to achieve deep interaction between different modalities. The proposed method is evaluated by IEMOCAP corpus and the experimental results show that the proposed method gives better performance than the state-of-theart approaches.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا