Do you want to publish a course? Click here

Forces within hadrons on the light front

62   0   0.0 ( 0 )
 Added by Adam Freese
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this work, we find the light front densities for momentum and forces, including pressure and shear forces, within hadrons. This is achieved by deriving relativistically correct expressions relating these densities to the gravitational form factors $A(t)$ and $D(t)$ associated with the energy momentum tensor. The derivation begins from the fundamental definition of density in a quantum field theory, namely the expectation value of a local operator within a spatially-localized state. We find that it is necessary to use the light front formalism to define a density that corresponds to internal hadron structure. When using the instant form formalism, it is impossible to remove the spatial extent of the hadron wave function from any density, and -- even within instant form dynamics -- one does not obtain a Breit frame Fourier transform for a properly defined density. Within the front formalism, we derive new expressions for various mechanical properties of hadrons, including the mechanical radius, as well as for stability conditions. The multipole ansatz for the form factors is used as an example to illustrate all of these findings.



rate research

Read More

349 - V.A. Karmanov , P. Maris 2008
In relativistic frameworks, given by the Bethe-Salpeter and light-front bound state equations, the binding energies of system of three scalar particles interacting by scalar exchange particles are calculated. In contrast to two-body systems, the three-body binding energies obtained in these two approaches differ significantly from each other: the ladder kernel in light-front dynamics underbinds by approximately a factor of two compared to the ladder Bethe-Salpeter equation. By taking into account three-body forces in the light-front approach, generated by two exchange particles in flight, we find that most of this difference disappears; for small exchange masses, the obtained binding energies coincide with each other.
We derive simple relations which express 2D light front force distributions in terms of 3D Breit frame pressure and shear force distributions. Mathematically the relations correspond to invertible Abel transformation and they establish one-to-one mathematical equivalence of 3D Breit frame force distributions and 2D light front ones. Any knowledge (model calculation, experimental measurement, etc.) about pressure and shear force distributions in Breit frame can be unambiguously transformed into light front force distributions with the help of Abel transformation. It is important that the transformation ensures 2D stability conditions if the 3D stability conditions are satisfied. As an illustration of how the relations work, we calculated the light front force distributions for a large nucleus as a liquid drop, and for large $N_c$ nucleon as a chiral soliton.
Light front wave functions motivated by holographic constructions are used to study Bloom-Gilman duality of deep inelastic scattering. Separate expressions for structure functions in terms of quark and hadronic degrees of freedom are presented, with a goal of relating the two expressions. A two-parton model is defined and resonance transition form factors are computed using previously derived light front wave functions. A new form of global duality is derived from the valence quark-number sum rule. Using a complete set of hadronic states is necessary for this new global duality to be achieved. Previous original work does not provide such a set. This is remedied by amending the model to include a longitudinal confining potential, and the resulting complete set is sufficient to carry out the study of Bloom-Gilman duality. Expressions for transition form factors are obtained and all are shown to fall asymptotically as 1/Q2. The Feynman mechanism dominates the asymptotic behavior of the model. These transition form factors are used to assess the validity of the global and local duality sum rules, with the result that both neither are satisfied. Evaluations of the hadronic expression for q(x,Q2) provide more details about this lack. This result shows that the observed validity of both global and local forms of duality for deep inelastic scattering must be related to a feature of QCD that is deeper than completeness. Our simple present model suggests a prediction that Bloom-Gilman duality would not be observed if deep inelastic scattering experiments were to be made on the pion. The underlying origin of the duality phenomenon in deep inelastic scattering is deeply buried within the confinement aspects of QCD, and remains a mystery.
208 - V.A. Karmanov , P. Maris 2008
Bethe-Salpeter and light-front bound state equations for three scalar particles interacting by scalar exchange-bosons are solved in ladder truncation. In contrast to two-body systems, the three-body binding energies obtained in these two approaches differ significantly from each other: the ladder kernel in light-front dynamics underbinds by approximately a factor of two compared to the ladder Bethe-Salpeter equation. By taking into account three-body forces in the light-front approach, generated by two exchange-bosons in flight, we find that most of this difference disappears; for small exchange masses, the obtained binding energies coincide with each other.
We provide the complete decomposition of the local gauge-invariant energy-momentum tensor for spin-1 hadrons, including non-conserved terms for the individual parton flavors and antisymmetric contributions originating from intrinsic spin. We state sum rules for the gravitational form factors appearing in this decomposition and provide relations for the mass decomposition, work balance, total and orbital angular momentum, mass radius, and inertia tensor. Generalizing earlier work, we derive relations between the total and orbital angular momentum and the Mellin moments of twist-2 and 3 generalized parton distributions, accessible in hard exclusive processes with spin-1 targets. Throughout the work, we comment on the unique features in these relations originating from the spin-1 nature of the hadron, being absent in the lower spin cases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا